推荐
专栏
教程
课程
飞鹅
本次共找到12条
seaborn
相关的信息
Irene181
•
3年前
数据可视化干货:使用pandas和seaborn制作炫酷图表
吾日三省吾身:为人谋而不忠乎?与朋友交而不信乎?传不习乎?导读:我们介绍过用matplotlib制作图表的一些tips,感兴趣的同学可以戳→。matplotlib是一个相当底层的工具。你可以从其基本组件中组装一个图表:数据显示(即绘图的类型:线、条、框、散点图、轮廓等)、图例、标题、刻度标记和其他注释。在pandas中,我们可能有多个数据列,并且带有行
Karen110
•
3年前
plotnine: Python版的ggplot2作图库
R语言的ggplot2绘图能力超强,python虽有matplotlib,但是语法臃肿,使用复杂,入门极难,seaborn的出现稍微改善了matplotlib代码量问题,但是定制化程度依然需要借助matplotlib,使用难度依然很大。而且咱们经管专业学编程语言,一直有一个经久不衰的问题\“学数据分析,到底选择R还是Python”。通过plotnine这
黎明之道
•
3年前
python数据分析与可视化——利用Seaborn进行绘图
利用Seaborn进行绘图下面例子中所用数据下载地址——Matplotlib绘图基本模仿MATLAB绘图库,其绘图风格和MATLAB类似。由于MATLAB绘图风格偏古典,因此,Python开源社区开发了Seabo
Stella981
•
3年前
Seaborn学习02:折线图(多坐标)
在Seabor中实现折线图有两种。一种是在relplot()函数中的kind参数设置line就可以,另一种是lineplot()函数来可以直接实现折线图。通过relplot来实现importmatplotlib.pyplotaspltimportseabornassns数据集data
小万哥
•
7个月前
NumPy 泊松分布模拟与 Seaborn 可视化技巧
泊松分布是描述单位时间间隔内随机事件发生次数的离散概率分布,参数λ表示平均速率。公式为P(k)e^(λ)(λ^k)/k!。NumPy的random.poisson()可生成泊松分布数据。当λ很大时,泊松分布近似正态分布。练习包括模拟顾客到达、比较不同λ下的分布及模拟电话呼叫中心。使用Seaborn可进行可视化。关注公众号LetusCoding获取更多文章。
小万哥
•
7个月前
NumPy 均匀分布模拟及 Seaborn 可视化教程
本文介绍了均匀分布和逻辑分布。均匀分布是连续概率分布,所有事件在指定范围内有相等概率发生,常用于随机数生成。其概率密度函数为f(x)1/(ba),其中a和b分别为下限和上限。NumPy的random.uniform()可生成均匀分布的随机数。Seaborn可用于可视化分布。文中还提供了练习及解决方案,包括生成不同范围的均匀分布随机数、比较分布形状变化及模拟抛硬币实验。逻辑分布则常用于S形增长现象的建模,其PDF为(scale/(π(1(xloc)/scale)^2)),由位置参数loc和尺度参数scale定义。
小万哥
•
7个月前
多项分布模拟及 Seaborn 可视化教程
多项分布是二项分布的推广,描述了在n次试验中k种不同事件出现次数的概率分布。参数包括试验次数n、结果概率列表pvals(和为1)和输出形状size。PMF公式展示了各结果出现次数的概率。NumPy的random.multinomial()可生成多项分布数据。练习包括模拟掷骰子和抽奖活动。解决方案提供了相关图表绘制代码。关注公众号“LetusCoding”获取更多内容。
小万哥
•
8个月前
NumPy 随机数据分布与 Seaborn 可视化详解
随机数据分布什么是数据分布?数据分布是指数据集中所有可能值出现的频率,并用概率来表示。它描述了数据取值的可能性。在统计学和数据科学中,数据分布是分析数据的重要基础。NumPy中的随机分布NumPy的random模块提供了多种方法来生成服从不同分布的随机数。
小万哥
•
8个月前
NumPy 正态分布与 Seaborn 可视化指南
正态分布(高斯分布)是重要的概率模型,具有钟形曲线特征,由均值μ和标准差σ描述。NumPy的random.normal()可生成正态分布随机数,Seaborn库方便绘制分布图。正态分布广泛应用于统计学、机器学习、金融和工程等领域。练习包括生成正态分布数据、比较不同标准差影响及模拟考试成绩计算平均分和标准分。
小万哥
•
7个月前
NumPy 二项分布生成与 Seaborn 可视化技巧
二项分布是描述固定次数独立试验中成功次数的概率分布,常用于分析二元结果的事件,如抛硬币。分布由参数n(试验次数)、p(单次成功概率)和k(成功次数)定义。概率质量函数P(k)C(n,k)p^k(1p)^(nk)。NumPy的random.binomial()可生成二项分布数据,Seaborn可用于可视化。当n大且p接近0.5时,二项分布近似正态分布。练习包括模拟不同条件下的二项分布和应用到考试场景。
1
2