NumPy 正态分布与 Seaborn 可视化指南

小万哥
• 阅读 206

正态分布(高斯分布)

简介

正态分布(也称为高斯分布)是一种非常重要的概率分布,它描述了许多自然和人为现象的数据分布情况。正态分布的形状呈钟形,其峰值位于平均值处,两侧对称下降。

特征

正态分布可以用两个参数来完全描述:

均值(μ):表示数据的平均值,分布的峰值位于 μ 处。 标准差(σ):表示数据的离散程度,数值越大,分布越平坦。

生成正态分布数据

NumPy 提供了 random.normal() 函数来生成服从正态分布的随机数。该函数接受以下参数:

loc:正态分布的均值,默认为 0。 scale:正态分布的标准差,默认为 1。 size:输出数组的形状。

示例:生成 100 个服从正态分布的随机数,均值为 5,标准差为 2:

import numpy as np

data = np.random.normal(loc=5, scale=2, size=100)
print(data)

可视化正态分布

Seaborn 库提供了便捷的函数来可视化分布,包括正态分布。

示例:绘制服从正态分布的数据的分布图:

import seaborn as sns
import numpy as np

data = np.random.normal(size=1000)

sns.distplot(data)
plt.show()

应用

正态分布在许多领域都有应用,例如:

统计学:用于推断总体参数,进行假设检验等。 机器学习:用于数据预处理,特征工程等。 金融:用于建模股票价格、汇率等金融数据。 工程:用于控制质量、可靠性分析等。

练习

  1. 生成 500 个服从正态分布的随机数,均值为 10,标准差为 3,并绘制它们的分布图。
  2. 比较不同标准差下正态分布形状的变化。
  3. 利用正态分布来模拟一次考试成绩,并计算平均分和标准分。

解决方案

import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt

# 1. 生成服从正态分布的随机数并绘制分布图
data = np.random.normal(loc=10, scale=3, size=500)
sns.distplot(data)
plt.show()

# 2. 比较不同标准差下正态分布形状的变化
sns.distplot(np.random.normal(size=1000, scale=1), label="σ=1")
sns.distplot(np.random.normal(size=1000, scale=2), label="σ=2")
sns.distplot(np.random.normal(size=1000, scale=3), label="σ=3")
plt.legend()
plt.show()

# 3. 模拟考试成绩并计算平均分和标准分
scores = np.random.normal(loc=80, scale=10, size=100)
print("平均分:", scores.mean())
print("标准分:", (scores - scores.mean()) / scores.std())

解释:

在第一个练习中,我们生成了 500 个服从正态分布的随机数,均值为 10,标准差为 3,并使用 Seaborn 的 distplot() 函数绘制了它们的分布图。 在第二个练习中,我们生成了三个服从正态分布的数据集,分别设置标准差为 1、2 和 3,并使用 Seaborn 的 distplot() 函数绘制了它们的分布图。我们可以观察到,随着标准差的增加,分布变得更加平坦,两侧的尾巴更加明显。 在第三个练习中,我们模拟了一次考试成绩,假设成绩服从正态分布,均值为 80,标准差为 10。然后,我们计算了考试成绩的平均分和标准分。

最后

为了方便其他设备和平台的小伙伴观看往期文章:

微信公众号搜索:Let us Coding,关注后即可获取最新文章推送

看完如果觉得有帮助,欢迎点赞、收藏、关注

点赞
收藏
评论区
推荐文章
Wesley13 Wesley13
3年前
Java中调用Matlab方法计算数值,以解二维标准正态分布累计函数为例
项目中遇到了用java计算二维标准正态分布累计函数。网上了查了好久才找到解决的方法,特此记录下来。问题描述:求解二维标准正态分布累计函数M(a,b:ρ),其中,a,b分别为两个变量的最大取值。ρ为a和b的相关系数。运用Matlabl里面的mvncdf进行计算,得到结果。系统以及程序版本Win7(64bits)MATLAB201
Stella981 Stella981
3年前
Android OpenCV(十七):高斯噪声
高斯噪声高斯噪声是指它的概率密度函数服从高斯分布(即正态分布)的一类噪声。常见的高斯噪声包括起伏噪声、宇宙噪声、热噪声和散粒噪声等等。这类噪声主要来源于电子电路噪声和低照明度或高温带来的传感器噪声,也成为正态噪声,是在实践中经常用到的噪声模型。区别于椒盐噪声随机出现在图像中的任意位置,高斯噪声出现在图像中的所有位置。且概率密度函
Easter79 Easter79
3年前
TensorFlow——LinearRegression简单模型代码
代码函数详解tf.random.truncated\_normal()函数tf.truncated\_normal函数随机生成正态分布的数据,生成的数据是截断的正态分布,截断的标准是2倍的stddev。zip()函数zip() 函数用于将可迭代对象作为参数,将对象中对应的元素打包成一个个元组,然后返回由这些元组组成的对象。如果各个可迭代对象的
Wesley13 Wesley13
3年前
MySQL部分从库上面因为大量的临时表tmp_table造成慢查询
背景描述Time:20190124T00:08:14.70572408:00User@Host:@Id:Schema:sentrymetaLast_errno:0Killed:0Query_time:0.315758Lock_
小万哥 小万哥
5个月前
NumPy 均匀分布模拟及 Seaborn 可视化教程
本文介绍了均匀分布和逻辑分布。均匀分布是连续概率分布,所有事件在指定范围内有相等概率发生,常用于随机数生成。其概率密度函数为f(x)1/(ba),其中a和b分别为下限和上限。NumPy的random.uniform()可生成均匀分布的随机数。Seaborn可用于可视化分布。文中还提供了练习及解决方案,包括生成不同范围的均匀分布随机数、比较分布形状变化及模拟抛硬币实验。逻辑分布则常用于S形增长现象的建模,其PDF为(scale/(π(1(xloc)/scale)^2)),由位置参数loc和尺度参数scale定义。
小万哥 小万哥
5个月前
多项分布模拟及 Seaborn 可视化教程
多项分布是二项分布的推广,描述了在n次试验中k种不同事件出现次数的概率分布。参数包括试验次数n、结果概率列表pvals(和为1)和输出形状size。PMF公式展示了各结果出现次数的概率。NumPy的random.multinomial()可生成多项分布数据。练习包括模拟掷骰子和抽奖活动。解决方案提供了相关图表绘制代码。关注公众号“LetusCoding”获取更多内容。
小万哥 小万哥
5个月前
卡方分布和 Zipf 分布模拟及 Seaborn 可视化教程
卡方分布是统计学中的一种连续概率分布,用于假设检验,形状由自由度(df)决定。自由度越大,分布越平缓。NumPy的random.chisquare()可生成卡方分布随机数。Seaborn能可视化卡方分布。练习包括模拟不同自由度的卡方分布、进行卡方检验。瑞利分布描述信号处理中幅度分布,参数为尺度(scale)。Zipf分布常用于自然语言等幂律特征数据,参数a控制形状。NumPy的random.zipf()生成Zipf分布随机数。
小万哥 小万哥
6个月前
NumPy 随机数据分布与 Seaborn 可视化详解
随机数据分布什么是数据分布?数据分布是指数据集中所有可能值出现的频率,并用概率来表示。它描述了数据取值的可能性。在统计学和数据科学中,数据分布是分析数据的重要基础。NumPy中的随机分布NumPy的random模块提供了多种方法来生成服从不同分布的随机数。
小万哥 小万哥
5个月前
NumPy 二项分布生成与 Seaborn 可视化技巧
二项分布是描述固定次数独立试验中成功次数的概率分布,常用于分析二元结果的事件,如抛硬币。分布由参数n(试验次数)、p(单次成功概率)和k(成功次数)定义。概率质量函数P(k)C(n,k)p^k(1p)^(nk)。NumPy的random.binomial()可生成二项分布数据,Seaborn可用于可视化。当n大且p接近0.5时,二项分布近似正态分布。练习包括模拟不同条件下的二项分布和应用到考试场景。
小万哥 小万哥
5个月前
NumPy 泊松分布模拟与 Seaborn 可视化技巧
泊松分布是描述单位时间间隔内随机事件发生次数的离散概率分布,参数λ表示平均速率。公式为P(k)e^(λ)(λ^k)/k!。NumPy的random.poisson()可生成泊松分布数据。当λ很大时,泊松分布近似正态分布。练习包括模拟顾客到达、比较不同λ下的分布及模拟电话呼叫中心。使用Seaborn可进行可视化。关注公众号LetusCoding获取更多文章。