NumPy 泊松分布模拟与 Seaborn 可视化技巧

小万哥
• 阅读 204

泊松分布

简介

泊松分布是一种离散概率分布,用于描述在给定时间间隔内随机事件发生的次数。它常用于模拟诸如客户到达商店、电话呼叫接入中心等事件。

参数

泊松分布用一个参数来定义:

λ:事件发生的平均速率,表示在单位时间内事件发生的平均次数。

公式

泊松分布的概率质量函数 (PMF) 给出了在指定时间间隔内发生 k 次事件的概率,计算公式为:

P(k) = e^(-λ) (λ^k) / k!

其中:

e^(-λ):表示没有事件发生的概率。 (λ^k):表示 k 次事件发生的概率。 k!:表示 k 个元素的阶乘,即 k × (k - 1) × (k - 2) × ... × 2 × 1。

生成泊松分布数据

NumPy 提供了 random.poisson() 函数来生成服从泊松分布的随机数。该函数接受以下参数:

lam:事件发生的平均速率。 size:输出数组的形状。

示例:生成一个平均速率为 5 的事件在 10 个时间间隔内发生的次数:

import numpy as np

data = np.random.poisson(lam=5, size=10)
print(data)

可视化泊松分布

Seaborn 库提供了便捷的函数来可视化分布,包括泊松分布。

示例:绘制平均速率为 7 的事件在 1000 个时间间隔内发生的次数分布:

import seaborn as sns
import numpy as np

data = np.random.poisson(lam=7, size=1000)
sns.distplot(data)
plt.show()

正态分布与泊松分布的关系

当事件发生的平均速率 λ 很大时,泊松分布可以近似为正态分布。其均值 μ 为 λ,标准差 σ 为 sqrt(λ)。

示例:比较泊松分布和正态分布的形状:

import seaborn as sns
import numpy as np

lam = 50

# 生成泊松分布数据
data_poisson = np.random.poisson(lam=lam, size=1000)

# 生成正态分布数据
mu = lam
sigma = np.sqrt(lam)
data_normal = np.random.normal(loc=mu, scale=sigma, size=1000)

sns.distplot(data_poisson, label="Poisson")
sns.distplot(data_normal, label="Normal")
plt.legend()
plt.show()

练习

  1. 在一个小时内,一家商店平均收到 10 位顾客。模拟顾客到达商店的次数并绘制分布图。
  2. 比较不同平均速率下泊松分布形状的变化。
  3. 利用泊松分布来模拟一个呼叫中心每天接到的电话呼叫数量,并计算平均呼叫量和每天接听超过 30 个电话的概率。

解决方案

import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt

# 1. 模拟顾客到达商店的次数并绘制分布图
data = np.random.poisson(lam=10, size=1000)
sns.distplot(data)
plt.show()

# 2. 比较不同平均速率下泊松分布形状的变化
lam_values = [5, 10, 20, 50]
for lam in lam_values:
    data = np.random.poisson(lam=lam, size=1000)
    sns.distplot(data, label=f"λ={lam}")
plt.legend()
plt.show()

# 3. 模拟电话呼叫数量并计算平均呼叫量和每天接听超过 30 个电话的概率
calls_per_day = np.random.poisson(lam=150, size=365)
print("平均呼叫量:", calls_per_day.mean())
print("每天接听超过 30 个电话的概率:", (calls_per_day > 30).mean())

最后

为了方便其他设备和平台的小伙伴观看往期文章:

微信公众号搜索:Let us Coding,关注后即可获取最新文章推送

看完如果觉得有帮助,欢迎点赞、收藏、关注

点赞
收藏
评论区
推荐文章
Aidan075 Aidan075
3年前
用python重温统计学基础:离散型概率分布
简单介绍数据的分布形态描述中的离散型概率分布利用python中的matplotlib来模拟几种分布的图形在上一篇描述性统计(http://mp.weixin.qq.com/s?__bizMzg5NDE3Nzc5Mw&mid2247483743&idx1&sn8a0bff6f07d2c1804ccf301b400a263e&
Aidan075 Aidan075
3年前
用python重温统计学基础:离散型概率分布
简单介绍数据的分布形态描述中的离散型概率分布利用python中的matplotlib来模拟几种分布的图形在上一篇中提到数据分析的对象主要是结构化化数据,而所有的结构化数据可以从三个维度进行描述,即数据的集中趋势描述,数据的离散程度描述和数据的分布形态描述,并对前两个维度进行了介绍。本篇主要是对数据的分布形态描述中的离散型概率分布进行介绍。
Easter79 Easter79
3年前
Twitter的分布式自增ID算法snowflake (Java版)
概述分布式系统中,有一些需要使用全局唯一ID的场景,这种时候为了防止ID冲突可以使用36位的UUID,但是UUID有一些缺点,首先他相对比较长,另外UUID一般是无序的。有些时候我们希望能使用一种简单一些的ID,并且希望ID能够按照时间有序生成。而twitter的snowflake解决了这种需求,最初Twitter把存储系统从MySQL迁移
Wesley13 Wesley13
3年前
MySQL部分从库上面因为大量的临时表tmp_table造成慢查询
背景描述Time:20190124T00:08:14.70572408:00User@Host:@Id:Schema:sentrymetaLast_errno:0Killed:0Query_time:0.315758Lock_
小万哥 小万哥
5个月前
NumPy 均匀分布模拟及 Seaborn 可视化教程
本文介绍了均匀分布和逻辑分布。均匀分布是连续概率分布,所有事件在指定范围内有相等概率发生,常用于随机数生成。其概率密度函数为f(x)1/(ba),其中a和b分别为下限和上限。NumPy的random.uniform()可生成均匀分布的随机数。Seaborn可用于可视化分布。文中还提供了练习及解决方案,包括生成不同范围的均匀分布随机数、比较分布形状变化及模拟抛硬币实验。逻辑分布则常用于S形增长现象的建模,其PDF为(scale/(π(1(xloc)/scale)^2)),由位置参数loc和尺度参数scale定义。
小万哥 小万哥
5个月前
多项分布模拟及 Seaborn 可视化教程
多项分布是二项分布的推广,描述了在n次试验中k种不同事件出现次数的概率分布。参数包括试验次数n、结果概率列表pvals(和为1)和输出形状size。PMF公式展示了各结果出现次数的概率。NumPy的random.multinomial()可生成多项分布数据。练习包括模拟掷骰子和抽奖活动。解决方案提供了相关图表绘制代码。关注公众号“LetusCoding”获取更多内容。
小万哥 小万哥
5个月前
卡方分布和 Zipf 分布模拟及 Seaborn 可视化教程
卡方分布是统计学中的一种连续概率分布,用于假设检验,形状由自由度(df)决定。自由度越大,分布越平缓。NumPy的random.chisquare()可生成卡方分布随机数。Seaborn能可视化卡方分布。练习包括模拟不同自由度的卡方分布、进行卡方检验。瑞利分布描述信号处理中幅度分布,参数为尺度(scale)。Zipf分布常用于自然语言等幂律特征数据,参数a控制形状。NumPy的random.zipf()生成Zipf分布随机数。
小万哥 小万哥
6个月前
NumPy 随机数据分布与 Seaborn 可视化详解
随机数据分布什么是数据分布?数据分布是指数据集中所有可能值出现的频率,并用概率来表示。它描述了数据取值的可能性。在统计学和数据科学中,数据分布是分析数据的重要基础。NumPy中的随机分布NumPy的random模块提供了多种方法来生成服从不同分布的随机数。
小万哥 小万哥
6个月前
NumPy 正态分布与 Seaborn 可视化指南
正态分布(高斯分布)是重要的概率模型,具有钟形曲线特征,由均值μ和标准差σ描述。NumPy的random.normal()可生成正态分布随机数,Seaborn库方便绘制分布图。正态分布广泛应用于统计学、机器学习、金融和工程等领域。练习包括生成正态分布数据、比较不同标准差影响及模拟考试成绩计算平均分和标准分。
小万哥 小万哥
5个月前
NumPy 二项分布生成与 Seaborn 可视化技巧
二项分布是描述固定次数独立试验中成功次数的概率分布,常用于分析二元结果的事件,如抛硬币。分布由参数n(试验次数)、p(单次成功概率)和k(成功次数)定义。概率质量函数P(k)C(n,k)p^k(1p)^(nk)。NumPy的random.binomial()可生成二项分布数据,Seaborn可用于可视化。当n大且p接近0.5时,二项分布近似正态分布。练习包括模拟不同条件下的二项分布和应用到考试场景。