推荐
专栏
教程
课程
飞鹅
本次共找到5864条
深度学习框架
相关的信息
helloworld_54277843
•
2年前
深度强化学习
2022年数字信息化培训项目系列各企、事业单位:随着科技的快速发展,人工智能俨然成了当今社会的关注焦点。而在人工智能的发展上,深度学习、强化学习、迁移学习等成为了科学界、工业界研究和应用的热点。在实际研究和应用过程当中,研究人员逐渐发现了深度学习单独应用的缺点,如没有决策能力,不可推理等。而深度强化学习,作为一种崭新的机器学习方法,同时具有感知能力和决策能力
Stella981
•
3年前
PaddlePaddle Windows环境安装
PaddlePaddle(https://www.oschina.net/action/visit/ad?id1185)作为国内首个深度学习框架,最近发布了更加强大的Fluid1.2版本,增加了对Windows环境的支持,全面支持了Linux、Mac、Windows三大环境。PaddlePaddle(https://www.oschina.n
Wesley13
•
3年前
CNN中常用的四种卷积详解
卷积现在可能是深度学习中最重要的概念。正是靠着卷积和卷积神经网络,深度学习才超越了几乎其他所有的机器学习手段。这期我们一起学习下深度学习中常见的卷积有哪些?1\.一般卷积卷积在数学上用通俗的话来说就是输入矩阵与卷积核(卷积核也是矩阵)进行对应元素相乘并求和,所以一次卷积的结果的输出是一个数,最后对整个输入输入矩阵进行遍历,
helloworld_54277843
•
2年前
卷积神经网络模型发展及应用
卷积神经网络模型发展及应用转载地址:http://fcst.ceaj.org/CN/abstract/abstract2521.shtml深度学习是机器学习和人工智能研究的最新趋势,作为一个十余年来快速发展的崭新领域,越来越受到研究者的关注。卷积神经网络(CNN)模型是深度学习模型中最重要的一种经典结构,其性能在近年来深度学习任务上逐步提高。由于可以自动学
helloworld_38131402
•
2年前
深度学习|基于MobileNet的多目标跟踪深度学习算法
源自:控制与决策作者:薛俊韬马若寒胡超芳摘要针对深度学习算法在多目标跟踪中的实时性问题,提出一种基于MobileNet的多目标跟踪算法.借助于MobileNet深度可分离卷积能够对深度网络模型进行压缩的原理,将YOLOv3主干
四儿
•
1年前
人脸识别技术的精度提高及其应用
人脸识别技术是一种重要的生物识别技术,广泛应用于安全防护、金融支付、门禁系统等领域。为了提高人脸识别技术的精度,研究人员采用了多种方法,如深度学习、特征提取、图像处理等。其中,深度学习的方法在人脸识别领域取得了很好的效果。通过训练大量的图像数据,深度学习模
1
•••
5
6
7
•••
587