推荐
专栏
教程
课程
飞鹅
本次共找到3995条
cnn深度学习
相关的信息
helloworld_82640923
•
2年前
深度学习技术开发与应用
关键点1.强化学习的发展历程2.马尔可夫决策过程3.动态规划4.无模型预测学习5.无模型控制学习6.价值函数逼近7.策略梯度方法8.深度强化学习DQN算法系列9.深度策略梯度DDPG,PPO等第一天9:0012:0014:0017:00一、强化学习概述1.强化学习介绍2.强化学习与其它机器学习的不同3.强化学习发展历史4.强化学习典
helloworld_54277843
•
2年前
序列数据和文本的深度学习
序列数据和文本的深度学习用于构建深度学习模型的不同文本数据表示法:理解递归神经网络及其不同实现,例如长短期记忆网络(LSTM)和门控循环单元(GatedRecurrentUnit,GRU),它们为大多数深度学习模型提供文本和序列化数据;为序列化数据使用一维卷积。可以使用RNN构建的一些应用程序如下所示。文档分类器:识别推文或评论的情感,对新闻文章
京东云开发者
•
1年前
深度学习调参小册
谷歌大脑的五位深度学习大佬在“ChineseNewYear”期间合作推出了《深度学习调参手册(https://github.com/googleresearch/tuning_playbooksettingupexperimenttracking)》,来为各位深度学习爱好者恭贺新年(我猜的),一时间好评如潮,获星过万,看来大家都是苦调参久已。难道依靠经验的调参变得“可解释”了?显然不是,而是大佬们分享自己的调参经验,内容还是挺多的,下面咱们去粗取精,希望能够获得飞升。
Stella981
•
3年前
MINIST深度学习识别:python全连接神经网络和pytorch LeNet CNN网络训练实现及比较(二)
版权声明:本文为博主原创文章,欢迎转载,并请注明出处。联系方式:460356155@qq.com在前一篇文章MINIST深度学习识别:python全连接神经网络和pytorchLeNetCNN网络训练实现及比较(一)(https://www.oschina.net/action/GoToLink?urlhttps%3A%2F%2Fwww
Easter79
•
3年前
TensorFlow On Flink 原理解析
作者:陈戊超(仲卓),阿里巴巴技术专家深度学习技术在当代社会发挥的作用越来越大。目前深度学习被广泛应用于个性化推荐、商品搜索、人脸识别、机器翻译、自动驾驶等多个领域,此外还在向社会各个领域迅速渗透。背景当前,深度学习的应用越来越多样化,随之涌现出诸多优秀的计算框架。其中TensorFlow,PyTorch,MXNeT作为广泛使用
Stella981
•
3年前
Spark如何与深度学习框架协作,处理非结构化数据
随着大数据和AI业务的不断融合,大数据分析和处理过程中,通过深度学习技术对非结构化数据(如图片、音频、文本)进行大数据处理的业务场景越来越多。本文会介绍Spark如何与深度学习框架进行协同工作,在大数据的处理过程利用深度学习框架对非结构化数据进行处理。Spark介绍Spark是大规模数据处理的事实标准,包括机器学习的操
Stella981
•
3年前
Deplearning.AI
【吴恩达课后作业目录】课程周数名称类型语言地址课程1神经网络和深度学习第1周深度学习简介测验中英传送门(https://www.oschina.net/action/GoToLink?urlhttps%3A%2F%2Fwww.cnblogs.com%2Fkongxiaoshuang%2Fp%
helloworld_86319425
•
2年前
人工智能人才培养
No.1第一天一、机器学习简介与经典机器学习算法介绍什么是机器学习?机器学习框架与基本组成机器学习的训练步骤机器学习问题的分类经典机器学习算法介绍章节目标:机器学习是人工智能的重要技术之一,详细了解机器学习的原理、机制和方法,为学习深度学习与迁移学习打下坚实的基础。二、深度学习简介与经典网络结构介绍神经网络简介神经网络组件简介神经网络训练方法卷积神经网络介
helloworld_82640923
•
2年前
迁移学习核心技术的开发与应用
一、机器学习简介与经典机器学习算法介绍1.什么是机器学习?2.机器学习框架与基本组成3.机器学习的训练步骤4.机器学习问题的分类5.经典机器学习算法介绍章节目标:机器学习是人工智能的重要技术之一,详细了解机器学习的原理、机制和方法,为学习深度学习与迁移学习打下坚实的基础。二、深度学习简介与经典网络结构介绍1.神经网络简介2.神经网络组件简介3.神经网
helloworld_38131402
•
2年前
“深度学习一点也不难!”
“深度学习一点也不难!”通常情况下,机器学习尤其是深度学习的使用往往需要具备相当的有利条件,包括一个大型的数据集,设计有效的模型,而且还需要训练的方法——但现在,利用迁移学习就可以消除掉这些瓶颈。作者|CalebKaiser以下为译文:在
1
•••
5
6
7
•••
400