深度强化学习
2022年数字信息化培训项目系列各企、事业单位:随着科技的快速发展,人工智能俨然成了当今社会的关注焦点。而在人工智能的发展上,深度学习、强化学习、迁移学习等成为了科学界、工业界研究和应用的热点。在实际研究和应用过程当中,研究人员逐渐发现了深度学习单独应用的缺点,如没有决策能力,不可推理等。而深度强化学习,作为一种崭新的机器学习方法,同时具有感知能力和决策能力
Wesley13 Wesley13
3年前
GPU加速深度学习
原文地址(https://www.oschina.net/action/GoToLink?urlhttp%3A%2F%2Fclick.aliyun.com%2Fm%2F26286%2F)1\.背景  一年半以前,AlphaGo完胜李世乭的围棋赛让深度学习(DeepLearning)这个名词家喻户晓,再度掀起人工智能的新一波热潮。其实深度学
Stella981 Stella981
3年前
Python实现深度学习系列之【正向传播和反向传播】
前言在了解深度学习框架之前,我们需要自己去理解甚至去实现一个网络学习和调参的过程,进而理解深度学习的机理;为此,博主这里提供了一个自己编写的一个例子,带领大家理解一下网络学习的正向传播和反向传播的过程;除此之外,为了实现batch读取,我还设计并提供了一个简单的DataLoader类去模拟深度学习中数据迭代器的取样;并且
Wesley13 Wesley13
3年前
MXNET:深度学习计算
我们将深入讲解模型参数的访问和初始化,以及如何在多个层之间共享同一份参数。之前我们一直在使用默认的初始函数,net.initialize()。frommxnetimportinit,ndfrommxnet.gluonimportnnnetnn.Sequential()net.add(n
Wesley13 Wesley13
3年前
CNN中常用的四种卷积详解
卷积现在可能是深度学习中最重要的概念。正是靠着卷积和卷积神经网络,深度学习才超越了几乎其他所有的机器学习手段。这期我们一起学习下深度学习中常见的卷积有哪些?1\.一般卷积卷积在数学上用通俗的话来说就是输入矩阵与卷积核(卷积核也是矩阵)进行对应元素相乘并求和,所以一次卷积的结果的输出是一个数,最后对整个输入输入矩阵进行遍历,
文本的深度学习
序列数据和文本的深度学习用于构建深度学习模型的不同文本数据表示法:理解递归神经网络及其不同实现,例如长短期记忆网络(LSTM)和门控循环单元(GatedRecurrentUnit,GRU),它们为大多数深度学习模型提供文本和序列化数据;为序列化数据使用一维卷积。可以使用RNN构建的一些应用程序如下所示。文档分类器:识别推文或评论的情感,对新闻文章
深度学习|基于MobileNet的多目标跟踪深度学习算法
源自:控制与决策作者:薛俊韬马若寒胡超芳摘要针对深度学习算法在多目标跟踪中的实时性问题,提出一种基于MobileNet的多目标跟踪算法.借助于MobileNet深度可分离卷积能够对深度网络模型进行压缩的原理,将YOLOv3主干