CNN猫狗大战

好买-葡萄
• 阅读 857

好买网 www.goodmai.com IT技术交易平台 使用VGG模型进行猫狗大战 大赛简介 Kaggle 中的猫狗大战竞赛题目。在这个比赛中,有25000张标记好的猫和狗的图片用做训练,有12500张图片用做测试。这个竞赛是2013年开展的,如果你能够达到80%的准确率,在当年是一个 state-of-the-art 的成绩。

数据准备 在这里其实出了问题,由于研习社的题目给的是rar格式的压缩包,所以没办法和zip一样解压,我开始直接改成

!wget https://static.leiphone.com/cat_dog.rar
!unzip cat_dog.rar

显然是不行的,报错结果如下: CNN猫狗大战 可以看到需要加入< Comands >中的x,然后需要加入目录地址/content/cat_dog.rar,为什么是这个地址,请看下面一张图: CNN猫狗大战 然后就能愉快的下载解压数据了:

!wget https://static.leiphone.com/cat_dog.rar
!unrar x /content/cat_dog.rar

!wget http://fenggao-image.stor.sinaapp.com/dogscats.zip
!unzip dogscats.zip

1. 解压完成后cat_dog数据集目录: 2. test:最后通过训练好的模型来识别的测试图片。 train:用来训练模型的图片。 val:文件夹下的图片有确定的标签,用来测试模型训练效果。 3. 代码实战

import numpy as np
import matplotlib.pyplot as plt
import os
import torch
import torch.nn as nn
import torchvision
from torchvision import models,transforms,datasets
import time
import json

# 判断是否存在GPU设备
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print('Using gpu: %s ' % torch.cuda.is_available())

数据预处理

normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])

vgg_format = transforms.Compose([
                transforms.CenterCrop(224),
                transforms.ToTensor(),
                normalize,
            ])

data_dir = '/content/dogscats'

dsets = {x: datasets.ImageFolder(os.path.join(data_dir, x), vgg_format)
         for x in ['train', 'valid']}

dset_sizes = {x: len(dsets[x]) for x in ['train', 'valid']}
dset_classes = dsets['train'].classes
# 通过下面代码可以查看 dsets 的一些属性
print(dsets['train'].classes)
print(dsets['train'].class_to_idx)
print(dsets['train'].imgs[:5])
print('dset_sizes: ', dset_sizes)

loader_train = torch.utils.data.DataLoader(
dsets['train'], batch_size=64, shuffle=True, num_workers=6)

loader_valid = torch.utils.data.DataLoader(
dsets['valid'], batch_size=5, shuffle=False, num_workers=6)

'''
valid 数据一共有2000张图,每个batch是5张,因此,下面进行遍历一共会输出到 400
同时,把第一个 batch 保存到 inputs_try, labels_try,分别查看
'''
count = 1
for data in loader_valid:
    print(count, end='\n')
    if count == 1:
        inputs_try,labels_try = data
    count +=1

print(labels_try)
print(inputs_try.shape)

打印预览数据

# 显示图片的小程序
def imshow(inp, title=None):
#   Imshow for Tensor.
    inp = inp.numpy().transpose((1, 2, 0))
    mean = np.array([0.485, 0.456, 0.406])
    std = np.array([0.229, 0.224, 0.225])
    inp = np.clip(std * inp + mean, 0,1)
    plt.imshow(inp)
    if title is not None:
        plt.title(title)
    plt.pause(0.001)  # pause a bit so that plots are updated

# 显示 labels_try 的5张图片,即valid里第一个batch的5张图片
out = torchvision.utils.make_grid(inputs_try)
imshow(out, title=[dset_classes[x] for x in labels_try])

CNN猫狗大战 构建VGG 我们直接使用预训练好的 VGG 模型。

model_vgg = models.vgg16(pretrained=True)
print(model_vgg)

我们的目标是使用预训练好的模型,并且只对全连接层的最后一层进行改写nn.Linear(4096, 2)使得最后输出的结果只有两个,即分辨猫与狗。

为了在训练中冻结前面层的参数,需要设置 required_grad=False。这样,前面层的权重就不会自动更新了。训练的时候只会更新最后一层的参数。

model_vgg_new = model_vgg;

for param in model_vgg_new.parameters():
    param.requires_grad = False #冻结参数
'''
更改最后一层输出层
'''
model_vgg_new.classifier._modules['6'] = nn.Linear(4096, 2)
model_vgg_new.classifier._modules['7'] = torch.nn.LogSoftmax(dim = 1)

model_vgg_new = model_vgg_new.to(device)

'''
输出新的vgg模型
'''
print(model_vgg_new.classifier)

CNN猫狗大战 使用Adam优化器对模型进行优化

'''
第一步:创建损失函数和优化器

损失函数 NLLLoss() 的 输入 是一个对数概率向量和一个目标标签. 
它不会为我们计算对数概率,适合最后一层是log_softmax()的网络. 
'''
criterion = nn.NLLLoss()

# 学习率
lr = 0.001
# 这里使用Adam优化器
optimizer_vgg = torch.optim.Adam(model_vgg_new.classifier[6].parameters(),lr = lr)

'''
第二步:训练模型并保存
model: 训练的模型
dataloader: 训练集
size: 训练集大小
epochs: 训练次数
optimizer: 优化器
'''
def train_model(model,dataloader,size,epochs=1,optimizer=None):
  model.train()  #用于模型训练

  for epoch in range(epochs):
    epoch_acc_max = 0
    running_loss = 0.0
    running_corrects = 0
    count = 0

    for inputs,classes in dataloader:
      inputs = inputs.to(device)
      classes = classes.to(device)

      outputs = model(inputs)    #参数前向传播

      loss = criterion(outputs,classes)           
      optimizer = optimizer
      optimizer.zero_grad()    #优化器梯度初始化
      loss.backward()            #梯度反向传播
      optimizer.step()
      _,preds = torch.max(outputs.data,1) #得到预测结果
        # statistics
      running_loss += loss.data.item()
      running_corrects += torch.sum(preds == classes.data)

      count += len(inputs)
      print('Training: No. ', count, ' process ... total: ', size)

    epoch_loss = running_loss / size
    epoch_acc = running_corrects.data.item() / size

    if epoch_acc > epoch_acc_max:
        epoch_acc_max = epoch_acc
        torch.save(model, 'model_best.pth')    #保存最好模型

    print('Loss: {:.4f} Acc: {:.4f}'.format(
                     epoch_loss, epoch_acc))


# 模型训练
train_model(model_vgg_new, loader_train,size = dset_sizes['train'], 
        epochs = 5, optimizer=optimizer_vgg)

测试test

dsets = datasets.ImageFolder('/content/cat_dog', vgg_format) 

final = {} #结果数组

loader_test = torch.utils.data.DataLoader(dsets, batch_size=1, shuffle=False, num_workers=0)

model_vgg_new = torch.load("/content/model_best.pth")

def test(model,dataloader,size):
    model.eval()    #参数固定

    cnt = 0    #count
    for inputs,_ in dataloader:
      if cnt < size:
        inputs = inputs.to(device)
        outputs = model(inputs)
        _,preds = torch.max(outputs.data,1) #预测值最大化
        key = dsets.imgs[cnt][0].split("/")[-1].split('.')[0] #对目录项进行分割
        final[key] = preds[0]
        cnt += 1
      else:
        break;
test(model_vgg_new,loader_test,size=2000)

''''
写表格
''''
with open("/content/test.csv",'a+') as f:
    for key in range(2000):
        f.write("{},{}\n".format(key,final[str(key)]))

测试结果 CNN猫狗大战

点赞
收藏
评论区
推荐文章
blmius blmius
3年前
MySQL:[Err] 1292 - Incorrect datetime value: ‘0000-00-00 00:00:00‘ for column ‘CREATE_TIME‘ at row 1
文章目录问题用navicat导入数据时,报错:原因这是因为当前的MySQL不支持datetime为0的情况。解决修改sql\mode:sql\mode:SQLMode定义了MySQL应支持的SQL语法、数据校验等,这样可以更容易地在不同的环境中使用MySQL。全局s
皕杰报表之UUID
​在我们用皕杰报表工具设计填报报表时,如何在新增行里自动增加id呢?能新增整数排序id吗?目前可以在新增行里自动增加id,但只能用uuid函数增加UUID编码,不能新增整数排序id。uuid函数说明:获取一个UUID,可以在填报表中用来创建数据ID语法:uuid()或uuid(sep)参数说明:sep布尔值,生成的uuid中是否包含分隔符'',缺省为
待兔 待兔
4个月前
手写Java HashMap源码
HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程22
Jacquelyn38 Jacquelyn38
3年前
2020年前端实用代码段,为你的工作保驾护航
有空的时候,自己总结了几个代码段,在开发中也经常使用,谢谢。1、使用解构获取json数据let jsonData  id: 1,status: "OK",data: 'a', 'b';let  id, status, data: number   jsonData;console.log(id, status, number )
双十一预售活动分析
2022年双十一促销活动已经开始,大家应该都提前开始关注今年双十一活动的时间表了吧?2022年10月24日晚8:00天猫双11预售时间,第一波销售时间10月31日晚8:0,第二波销售时间11月10日晚8:00;天猫双11的优惠力度是跨店每满30050
Wesley13 Wesley13
3年前
Java泛型的重要目的:别让猫别站在狗队里
《Java编程思想》第四版足足用了75页来讲泛型——厚厚的一沓内容,很容易让人头大——但其实根本不用这么多,只需要一句话:我是一个泛型队列,狗可以站进来,猫也可以站进来,但最好不要既站猫,又站狗!01、泛型是什么泛型,有人拆解这个词为“参数化类型”。这种拆解其实也不好理解,还是按照沉默王二的意思来理解一下吧。现在有一只玻璃杯,你可
Wesley13 Wesley13
3年前
2D小游戏开发学习笔记(5)
一、围住神经猫游戏游戏玩法:玩法很简单,蓝色圆圈代表神经猫,通过点击周围圆圈把猫困住,就算游戏成功游戏效果!(https://oscimg.oschina.net/oscnet/up968a35abafe07c092eacca8126719e14a50.png)逻辑梳理:1、
Stella981 Stella981
3年前
Django中Admin中的一些参数配置
设置在列表中显示的字段,id为django模型默认的主键list_display('id','name','sex','profession','email','qq','phone','status','create_time')设置在列表可编辑字段list_editable
Json格式Java封装天猫商品详情数据接口,实现海量商品采集业务
根据天猫的API文档,获取天猫商品详情的API是通过发送Http/Post/GET请求,其中itemID是具体的商品ID。以下是Python和Java封装获取天猫商品详情API(复制Taobaoapi2014)的示例代码:1.请求方式:HTTPPOSTGE
Python进阶者 Python进阶者
10个月前
Excel中这日期老是出来00:00:00,怎么用Pandas把这个去除
大家好,我是皮皮。一、前言前几天在Python白银交流群【上海新年人】问了一个Pandas数据筛选的问题。问题如下:这日期老是出来00:00:00,怎么把这个去除。二、实现过程后来【论草莓如何成为冻干莓】给了一个思路和代码如下:pd.toexcel之前把这