推荐
专栏
教程
课程
飞鹅
本次共找到114条
bp神经网络
相关的信息
小天
•
1年前
机器学习入门简介
在这篇博文中,我们将简要介绍以下主题,为您提供机器学习的基本介绍:什么是机器学习训练机器学习模型优化参数神经网络如果您不是专家,请不要担心—这篇博文所需的唯一知识是基础高中数学。什么是机器学习?牛津词典将机器学习定义为:“计算机从经验中学习的能力”。机器学
Stella981
•
3年前
Python图像读写方法对比
训练视觉相关的神经网络模型时,总是要用到图像的读写。方法有很多,比如matplotlib、cv2、PIL等。下面比较几种读写方式,旨在选出一个最快的方式,提升训练速度。实验标准 因为训练使用的框架是Pytorch,因此读取的实验标准如下: 1、读取分辨率都为1920x1080的5张图片(png格式一张,jpg格式四张)并保存到数
Stella981
•
3年前
Google研究人员推出了一种用于生成文本到图像的新框架(TReCS)
!(https://oscimg.oschina.net/oscnet/faedcb264a1c43969f2f5a2e6b9dbd2e.png)基于生成对抗网络(GAN)的深度神经网络促进了端到端可训练的照片级逼真的文本到图像的生成。许多方法还使用中间场景图表示法来改善图像合成。使用基于对话的交互的方法允许用户提供指令,以逐步改进和调整生成
Wesley13
•
3年前
AI新闻报
!(https://oscimg.oschina.net/oscnet/e3d2b223367f4b3cb23e6fa85f03ce89.png"圣诞鹿引导关注")1.【论文】聚焦快速机器学习训练算法,UC伯克利尤洋189页博士论文公布过去十年,深度学习应用领域的数据量迅速增长,使得深度神经网络(DNN)的训练时
Wesley13
•
3年前
AI求解薛定谔方程,兼具准确度和计算效率,登上《自然
作为量子力学的基础方程之一,薛定谔方程一直广受关注。去年,DeepMind科学家开发一种新的神经网络来近似计算薛定谔方程(https://www.oschina.net/action/GoToLink?urlhttps%3A%2F%2Flink.zhihu.com%2F%3Ftarget%3Dhttp%253A%2F%2Fmp.weixin.q
四儿
•
1年前
深度学习在语音识别中的应用及挑战
一、引言随着深度学习技术的快速发展,其在语音识别领域的应用也日益广泛。深度学习技术可以有效地提高语音识别的精度和效率,并且被广泛应用于各种应用场景。本文将探讨深度学习在语音识别中的应用及所面临的挑战。二、深度学习在语音识别中的应用1.基于深度神经网络的语音
胡赤儿
•
8个月前
人工智能换声技术:突破声音界限的奇迹
在当今数字化时代,人工智能(AI)技术的发展已经带来了许多惊人的创新,其中之一便是声音合成技术的飞速发展。AI换声技术是指利用深度学习和神经网络等先进技术,使计算机能够模仿、修改或生成人类的声音。这项技术不仅令人惊叹,而且在各个领域都有着广泛的应用,从娱乐
天翼云开发者社区
•
3星期前
生成对抗网络GAN简介
生成对抗网络(GenerativeAdversarialNetworks,GAN)是一种深度敏感词模型,用于生成具有高度逼真度的新数据,如图像、音频、文本等。GAN是由IanGoodfellow等人在2014年提出的,其核心思想是通过两个神经网络,即生成器和判别器,相互竞争和协作来实现数据生成的目的。GAN的基本框架和训练过程如下图所示:
京东云开发者
•
2天前
大模型在软件测试中的应用论讨
作者:京东物流张媛1、大模型的概念大模型是指具有大规模参数和复杂计算结构的机器学习模型。这些模型通常由深度神经网络构建而成,拥有数十亿甚至数千亿个参数。大模型的设计目的是为了提高模型的表达能力和预测性能,能够处理更加复杂的任务和数据。大模型在各种领域都有广
1
•••
8
9
10
•••
12