联邦GNN综述与经典算法介绍
联邦学习和GNN都是当前AI领域的研究热点。联邦学习的多个参与方可以在不泄露原始数据的情况下,安全合规地联合训练业务模型,目前已在诸多领域取得了较好的结果。GNN在应对非欧数据结构时通常有较好的表现,因为它不仅考虑节点本身的特征还考虑节点之间的链接关系及强度,在诸如:异常个体识别、链接预测、分子性质预测、地理拓扑图预测交通拥堵等领域均有不俗表现。
Stella981 Stella981
3年前
Github热榜:中英文识别OCR模型,百度开源媲美收费软件!
近日,百度飞桨(https://www.oschina.net/action/visit/ad?id1185)正式开源了业界最小的超轻量8.6M中英文识别OCR模型套件Paddle(https://www.oschina.net/action/visit/ad?id1185)OCR,在模型大小、精度和预测速度上,甚至超过了之前一度登上GitHub
Wesley13 Wesley13
3年前
R数据分析及可视化的一个简单例子
需求分析葡萄牙某银行拟根据现有客户资料建立预测模型,以配合其数据库营销策略,营销方式为电话直销,销售产品为某金融产品(termdeposit),数据分析的目标为通过预测模型识别对该金融产品有较高购买意愿的用户群。数据形式:从数据库中导出的excel文件数据内容: bankclientdata:  1age(nume
Wesley13 Wesley13
3年前
Uber 业务预测系统实践
Forecastingisubiquitous如何利用预测来构建更好的产品和服务定量预测方法可分为:基于模型(modelbased)或因果关系,统计方法(statisticalmethods)和机器学习方法(machinelearningapproaches)Forecasti
Stella981 Stella981
3年前
LightGBM 算法原理
LightGBM的动机GBDT(GradientBoostingDecisionTree)是机器学习中一个长盛不衰的模型,其主要思想是利用弱分类器(决策树)迭代训练以得到最优模型,该模型具有训练效果好、不易过拟合等优点。GBDT在工业界应用广泛,通常被用于点击率预测,搜索排序等任务而GBDT在每一次迭代的时
Wesley13 Wesley13
3年前
KNN分类算法原理分析及代码实现
1、分类与聚类的概念与区别分类:是从一组已知的训练样本中发现分类模型,并且使用这个分类模型来预测待分类样本。目前常用的分类算法主要有:朴素贝叶斯分类算法(NaïveBayes)、支持向量机分类算法(SupportVectorMachines)、KNN最近邻算法(kNearestNeighbors)、神经网络算法(NNet)以及决策树(De
一种面向混合云平台基于LSTM预测模型的资源池配额方法。
基于用户的历史配额申请情况和实际资源使用情况组成数据集搭建LSTM时序预测模型。当前用户提出资源配额申请时,基于该用户的历史资源实际使用情况结合LSTM模型来预测该次配额申请的实际使用量来动态调整实际分配给用户的配额量从而减少资源滥用的可能性。
智多星V+TNY264278 智多星V+TNY264278
1个月前
深挖淘宝API数据,打造高效销售预测模型
通过淘宝API进行销售预测是一个复杂但非常有价值的过程。以下是一个基于淘宝API数据分析进行销售预测的具体步骤、方法、结论以及相关的建议和改进措施。一、分析步骤数据收集:使用淘宝开放平台提供的API接口,如商品搜索API、交易查询API等,收集商品的销售数