R数据分析及可视化的一个简单例子

Wesley13
• 阅读 730

需求分析

葡萄牙某银行拟根据现有客户资料建立预测模型,以配合其数据库营销策略,营销方式为电话直销,销售产品为某金融产品(term deposit),数据分析的目标为通过预测模型识别对该金融产品有较高购买意愿的用户群。

数据形式:从数据库中导出的excel文件

数据内容:

 # bank client data:
   1 - age (numeric)
   2 - job : type of job (categorical: "admin.","unknown","unemployed","management","housemaid","entrepreneur","student",
                                       "blue-collar","self-employed","retired","technician","services")
   3 - marital : marital status (categorical: "married","divorced","single"; note: "divorced" means divorced or widowed)
   4 - education (categorical: "unknown","secondary","primary","tertiary")
   5 - default: has credit in default? (binary: "yes","no")
   6 - balance: average yearly balance, in euros (numeric)
   7 - housing: has housing loan? (binary: "yes","no")
   8 - loan: has personal loan? (binary: "yes","no")
   # related with the last contact of the current campaign:
   9 - contact: contact communication type (categorical: "unknown","telephone","cellular")
  10 - day: last contact day of the month (numeric)
  11 - month: last contact month of year (categorical: "jan", "feb", "mar", ..., "nov", "dec")
  12 - duration: last contact duration, in seconds (numeric)
   # other attributes:
  13 - campaign: number of contacts performed during this campaign and for this client (numeric, includes last contact)
  14 - pdays: number of days that passed by after the client was last contacted from a previous campaign (numeric, -1 means client was not previously contacted)
  15 - previous: number of contacts performed before this campaign and for this client (numeric)
  16 - poutcome: outcome of the previous marketing campaign (categorical: "unknown","other","failure","success")

  Output variable (desired target):
  17 - y - has the client subscribed a term deposit? (binary: "yes","no")

下面用R语言进行数据分析及可视化

> bank <- read.csv("H:/bank/bank-full.csv", sep = ";", header = T) //载入数据
> summary(bank) //对数据进行分析汇总

R数据分析及可视化的一个简单例子

//导入要用到的包
> library(caret)
> library(ggplot2)
> library(gplots)
 
> require(rpart)
> require(caret)
> require(ggplot2)
> require(gplots)
//运用决策树模型对数据做初步分类建模和变量选择
> bank.tree <- rpart(y ~ ., data = bank, method = "class", cp = 0.001)
> treeImp <- varImp(bank.tree, scale = TRUE, surrogates = FALSE, competes = TRUE)
> treeImp$Variable <- rownames(treeImp)
> treeImp.sort <- treeImp[order(-treeImp$Overall), ]
> ggplot(treeImp, aes(Variable, Overall)) + geom_bar(stat = "identity") + coord_flip()

R数据分析及可视化的一个简单例子

//根据cpplot对树做裁剪
plotcp(bank.tree)

R数据分析及可视化的一个简单例子

//输出
> printcp(bank.tree)

Classification tree:

rpart(formula = y ~ ., data = bank, method = "class", cp = 0.001)

Variables actually used in tree construction:

[1] age balance contact day duration education housing job marital

[10] month pdays poutcome previous

Root node error: 5289/45211 = 0.11698

n= 45211

CP nsplit rel error xerror xstd

1 0.0380034 0 1.00000 1.00000 0.012921

2 0.0253356 3 0.88599 0.89147 0.012287

3 0.0170164 4 0.86065 0.86425 0.012120

4 0.0080355 5 0.84364 0.84969 0.012028

5 0.0042226 7 0.82757 0.84061 0.011971

6 0.0039705 10 0.81490 0.84061 0.011971

7 0.0034033 13 0.80299 0.83324 0.011924

8 0.0022373 15 0.79618 0.82133 0.011848

9 0.0019537 21 0.78276 0.81584 0.011812

10 0.0017962 24 0.77690 0.81566 0.011811

11 0.0016071 26 0.77330 0.81717 0.011821

12 0.0015126 30 0.76687 0.82057 0.011843

13 0.0014180 32 0.76385 0.81906 0.011833

14 0.0013235 40 0.75099 0.81887 0.011832

15 0.0012290 44 0.74570 0.81755 0.011823

16 0.0011344 51 0.73587 0.81660 0.011817

17 0.0010399 61 0.72452 0.81868 0.011831

18 0.0010000 63 0.72244 0.82416 0.011866

//绘制决策树
> bank.tree <- rpart(y ~ ., data = bank, method = "class", cp = 0.0022373)
> plot(bank.tree, branch = 0, margin = 0.1, uniform = T)
> text(bank.tree, use.n = T, col = "red", cex = 0.6)

R数据分析及可视化的一个简单例子

//变量初选,分析和变换

根据决策树分析的结果,我们选择变量重要性最高的前5个变量做进一步研究,依次是:

Duration : last contact duration, in seconds (numeric)

month : last contact month of year (categorical: "jan", "feb", "mar", ..., "nov", "dec")

poutcome : outcome of the previous marketing campaign (categorical: "unknown","other","failure","success")

pdays : number of days that passed by after the client was last contacted from a previous campaign (numeric, -1 means client was not previously contacted)

previous : number of contacts performed before this campaign and for this client (numeric)

//a) Duration参数分析
> bank$y_dummy = ifelse(bank$y == "yes", 1, 0)
> summary(bank$duration)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
    0.0   103.0   180.0   258.2   319.0  4918.0 
> ggplot(bank, aes(duration, y_dummy)) + geom_smooth() + geom_point()

R数据分析及可视化的一个简单例子

//根据拟合形态对Duration做一个二次项。
> bank$duration.sq <- bank$duration * bank$duration

//b)对month 参数分析
> summary(bank$month)
  apr   aug   dec   feb   jan   jul   jun   mar   may   nov   oct   sep 
 2932  6247   214  2649  1403  6895  5341   477 13766  3970   738   579 
> library(Rcmdr)
> plotMeans(bank$y_dummy, bank$month, error.bars = "se")

R数据分析及可视化的一个简单例子

> bank$month.sel <- ifelse(bank$month == "dec", 1, 0)
> bank$month.sel <- ifelse(bank$month == "mar", 1, bank$month)
> bank$month.sel <- ifelse(bank$month == "oct", 1, bank$month)
> bank$month.sel <- ifelse(bank$month == "sep", 1, bank$month)

//c) poutcome参数分析
>summary(bank$poutcome)
failure   other success unknown 
   4901    1840    1511   36959 
> plotMeans(bank$y_dummy, bank$poutcome, error.bars = "se")

R数据分析及可视化的一个简单例子

> bank$poutcome.success <- ifelse(bank$poutcome == "success", 1, 0)

//d)pdays参数分析
 
> summary(bank$pdays)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
   -1.0    -1.0    -1.0    40.2    -1.0   871.0 
> bank$nocontact <- ifelse(bank$pdays == -1, 1, 0)
> bank$pdays <- ifelse(bank$pdays == -1, 0, bank$pdays)
> summary(bank$nocontact)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
 0.0000  1.0000  1.0000  0.8174  1.0000  1.0000 
> plotMeans(bank$y_dummy, as.factor(bank$nocontact), error.bars = "se")

R数据分析及可视化的一个简单例子

> ggplot(bank, aes(log(pdays + 1))) + geom_histogram()

R数据分析及可视化的一个简单例子

> ggplot(bank, aes(log(pdays + 1), y_dummy)) + geom_smooth() + geom_point()

R数据分析及可视化的一个简单例子

//e) previous参数分析
 
> summary(bank$previous)
    Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
  0.0000   0.0000   0.0000   0.5803   0.0000 275.0000 
 
> ggplot(bank, aes(log(previous + 1))) + geom_histogram()

R数据分析及可视化的一个简单例子

> ggplot(bank, aes(log(previous + 1), y_dummy)) + geom_smooth() + geom_point()

R数据分析及可视化的一个简单例子

> bank$previous.0 <- as.factor(ifelse(bank$previous == 0, 1, 0))
> bank$previous.1 <- as.factor(ifelse(bank$previous == 1, 1, 0))
> bank$previous.2 <- as.factor(ifelse(bank$previous == 2, 1, 0))
> bank$previous.2plus <- as.factor(ifelse(bank$previous > 2, 1, 0))

//逻辑回归建模
> logistic.full <- glm(y_dummy ~ duration + duration.sq + month.sel + poutcome.success + 
+     bank$nocontact + log(pdays + 1) + bank$previous.0 + bank$previous.1 + bank$previous.2 + 
+     bank$previous.2plus, data = bank)
> summary(logistic.full)

Call:

glm(formula = y_dummy ~ duration + duration.sq + month.sel +

poutcome.success + bank$nocontact + log(pdays + 1) + bank$previous.0 +

bank$previous.1 + bank$previous.2 + bank$previous.2plus,

data = bank)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.15672 -0.11482 -0.04176 0.01313 1.08332

Coefficients: (2 not defined because of singularities)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.583e-01 2.348e-02 6.742 1.58e-11 ***

duration 6.574e-04 9.605e-06 68.444 < 2e-16 ***

duration.sq -1.350e-07 6.145e-09 -21.971 < 2e-16 ***

month.sel -6.720e-03 4.346e-04 -15.463 < 2e-16 ***

poutcome.success 4.555e-01 8.085e-03 56.340 < 2e-16 ***

bank$nocontact -1.749e-01 2.336e-02 -7.490 7.04e-14 ***

log(pdays + 1) -2.106e-02 4.335e-03 -4.858 1.19e-06 ***

bank$previous.01 NA NA NA NA

bank$previous.11 -2.522e-02 7.126e-03 -3.540 0.000401 ***

bank$previous.21 -1.641e-02 7.714e-03 -2.128 0.033367 *

bank$previous.2plus1 NA NA NA NA

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for gaussian family taken to be 0.07690626)

Null deviance: 4670.3 on 45210 degrees of freedom

Residual deviance: 3476.3 on 45202 degrees of freedom

AIC: 12340

Number of Fisher Scoring iterations: 2

> logistic.step <- step(logistic.full, direction = "both", k = 2)

Start: AIC=12340.45

y_dummy ~ duration + duration.sq + month.sel + poutcome.success +

bank$nocontact + log(pdays + 1) + bank$previous.0 + bank$previous.1 +

bank$previous.2 + bank$previous.2plus

Step: AIC=12340.45

y_dummy ~ duration + duration.sq + month.sel + poutcome.success +

bank$nocontact + log(pdays + 1) + bank$previous.0 + bank$previous.1 +

bank$previous.2

Step: AIC=12340.45

y_dummy ~ duration + duration.sq + month.sel + poutcome.success +

bank$nocontact + log(pdays + 1) + bank$previous.1 + bank$previous.2

Df Deviance AIC

3476.3 12340

- bank$previous.2 1 3476.7 12343

- bank$previous.1 1 3477.3 12351

- log(pdays + 1) 1 3478.1 12362

- bank$nocontact 1 3480.6 12394

- month.sel 1 3494.7 12577

- duration.sq 1 3513.4 12819

- poutcome.success 1 3720.4 15407

- duration 1 3836.6 16797

> summary(logistic.step)

Call:

glm(formula = y_dummy ~ duration + duration.sq + month.sel +

poutcome.success + bank$nocontact + log(pdays + 1) + bank$previous.1 +

bank$previous.2, data = bank)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.15672 -0.11482 -0.04176 0.01313 1.08332

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.583e-01 2.348e-02 6.742 1.58e-11 ***

duration 6.574e-04 9.605e-06 68.444 < 2e-16 ***

duration.sq -1.350e-07 6.145e-09 -21.971 < 2e-16 ***

month.sel -6.720e-03 4.346e-04 -15.463 < 2e-16 ***

poutcome.success 4.555e-01 8.085e-03 56.340 < 2e-16 ***

bank$nocontact -1.749e-01 2.336e-02 -7.490 7.04e-14 ***

log(pdays + 1) -2.106e-02 4.335e-03 -4.858 1.19e-06 ***

bank$previous.11 -2.522e-02 7.126e-03 -3.540 0.000401 ***

bank$previous.21 -1.641e-02 7.714e-03 -2.128 0.033367 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for gaussian family taken to be 0.07690626)

Null deviance: 4670.3 on 45210 degrees of freedom

Residual deviance: 3476.3 on 45202 degrees of freedom

AIC: 12340

Number of Fisher Scoring iterations: 2

//模型scoring和ROC评估
> require(ROCR)
载入需要的程辑包:ROCR
> bank.pred<-1/(1+exp(-predict(logistic.step)))
> roc.data <- prediction(bank.pred, labels = bank$y)
> roc.data <- performance(roc.data, "tpr", "fpr")
> plot(roc.data)

R数据分析及可视化的一个简单例子

> score<-data.frame("prob.y"=bank.pred,"y"=as.factor(bank$y_dummy))
>ggplot(score, aes(x=prob.y, fill=y)) + geom_histogram(position="identity", binwidth=0.01,alpha=0.5)

R数据分析及可视化的一个简单例子

通过对ROC和Score分布的分析,逻辑回归Score的分类效果还是不错的。具体的score cutoff值需要根据业务要求和营销成本而定。

点赞
收藏
评论区
推荐文章
blmius blmius
3年前
MySQL:[Err] 1292 - Incorrect datetime value: ‘0000-00-00 00:00:00‘ for column ‘CREATE_TIME‘ at row 1
文章目录问题用navicat导入数据时,报错:原因这是因为当前的MySQL不支持datetime为0的情况。解决修改sql\mode:sql\mode:SQLMode定义了MySQL应支持的SQL语法、数据校验等,这样可以更容易地在不同的环境中使用MySQL。全局s
皕杰报表之UUID
​在我们用皕杰报表工具设计填报报表时,如何在新增行里自动增加id呢?能新增整数排序id吗?目前可以在新增行里自动增加id,但只能用uuid函数增加UUID编码,不能新增整数排序id。uuid函数说明:获取一个UUID,可以在填报表中用来创建数据ID语法:uuid()或uuid(sep)参数说明:sep布尔值,生成的uuid中是否包含分隔符'',缺省为
待兔 待兔
4个月前
手写Java HashMap源码
HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程22
Stella981 Stella981
3年前
Django之Django模板
1、问:html页面从数据库中读出DateTimeField字段时,显示的时间格式和数据库中存放的格式不一致,比如数据库字段内容为2012082616:00:00,但是页面显示的却是Aug.26,2012,4p.m.答:为了页面和数据库中显示一致,需要在页面格式化时间,需要添加<td{{dayrecord.p\_time|date:
Caomeinico Caomeinico
3年前
壹脉销客V3.0.0版本,适合政企单位的宣传展示名片系统Java源码
壹立科技自主研发的FCRM壹脉销客智能名片系统,即营销获客的CRM运营管理系统,将全方位提升企业销售及销售管理能力。该系统以大数据和人工智能技术为驱动,以小程序为技术应用入口,包含六大核心产品:微官网、智能名片、分销商城、营销裂变系统、智能CRM管理系统、在线预约系统,围绕四大核心即:1、企业如何流量。打通流量,真实流量智能分发;2、数据智能预测。智能预测
壹脉销客V3.0.0版本,适合政企单位的宣传展示名片系统Java源码
壹立科技自主研发的FCRM壹脉销客智能名片系统,即营销获客的CRM运营管理系统,将全方位提升企业销售及销售管理能力。该系统以大数据和人工智能技术为驱动,以小程序为技术应用入口,包含六大核心产品:微官网、智能名片、分销商城、营销裂变系统、智能CRM管理系统、在线预约系统,围绕四大核心即:1、企业如何流量。打通流量,真实流量智能分发;2、数据智能预测。智能预测
Stella981 Stella981
3年前
Django中Admin中的一些参数配置
设置在列表中显示的字段,id为django模型默认的主键list_display('id','name','sex','profession','email','qq','phone','status','create_time')设置在列表可编辑字段list_editable
Caomeinico Caomeinico
3年前
壹脉销客V3.0.0版本,适合政企单位的宣传展示名片系统Java源码
壹立科技自主研发的FCRM壹脉销客智能名片系统,即营销获客的CRM运营管理系统,将全方位提升企业销售及销售管理能力。该系统以大数据和人工智能技术为驱动,以小程序为技术应用入口,包含六大核心产品:微官网、智能名片、分销商城、营销裂变系统、智能CRM管理系统、在线预约系统,围绕四大核心即:1、企业如何流量。打通流量,真实流量智能分发;2、数据智能预测。智能预测
good123 good123
3年前
适合政企单位的宣传展示名片系统Java源码
壹立科技自主研发的FCRM壹脉销客智能名片系统,即营销获客的CRM运营管理系统,将全方位提升企业销售及销售管理能力。该系统以大数据和人工智能技术为驱动,以小程序为技术应用入口,包含六大核心产品:微官网、智能名片、分销商城、营销裂变系统、智能CRM管理系统、在线预约系统,围绕四大核心即:1、企业如何流量。打通流量,真实流量智能分发;2、数据智能预测。智能预测
壹脉销客V3.0.0版本,适合政企单位的宣传展示名片系统Java源码
壹立科技自主研发的FCRM壹脉销客智能名片系统,即营销获客的CRM运营管理系统,将全方位提升企业销售及销售管理能力。该系统以大数据和人工智能技术为驱动,以小程序为技术应用入口,包含六大核心产品:微官网、智能名片、分销商城、营销裂变系统、智能CRM管理系统、在线预约系统,围绕四大核心即:1、企业如何流量。打通流量,真实流量智能分发;2、数据智能预测。智能预测