推荐
专栏
教程
课程
飞鹅
本次共找到1362条
贝叶斯分类算法
相关的信息
helloworld_78018081
•
3年前
最新美团点评Java团队面试题,感悟分享
1.笔试常见的问题?面试常见的问题上面给的面试题链接基本都有。我只提几点:1.写SQL:写SQL很常考察groupby、内连接和外连接。2.手写代码:手写代码一般考单例、排序、线程、消费者生产者。我建议排序算法除了冒泡排序,最好还能手写一种其他的排序代码。试想:如果一般面试者都写的冒泡排序,而你写的是快速排序/堆排序,肯定能给面试官留下不错的印象。
爱写码
•
3年前
国产开源网络框架t-io的炸裂性能之每秒处理1051万条聊天消息
内置各种数据监控的tio仍然可以跑出炸裂的性能数据友情提醒:开监控很耗性能,有时候为了数据得以监控必须采用性能更差的算法测试程序在tiostudy中,见下图参数设置如果想跑出好的成绩,总连接数大约保持在50300间总连接数过多或过少,不太容易跑出600万以上的数据,但是跑出100多万的连接数的范围是非常大的,各位可以亲测一下当然跑出啥成绩,还跟你的机器性能有
helloworld_75860873
•
2年前
机智云选择了纺织、养殖、纸包装行业深耕
中国水产养殖产能占全球总量的50%以上,但实际上水产养殖生产环境非常落后,新的技术能力可以让这个万亿产业快速进入农业4.0时代。比如吉之云利用技术在传统的送料机上增加了高清摄像头。广角比人眼更能有效观察整个鱼塘的鱼情。通过算法优化,可以实现每天多次自动投喂,减少水源污染和饲料浪费,最终显著增加鱼产量。智云有一个智能养殖机器人,看起来像个盒子,但是内置了低功耗
Wesley13
•
3年前
UDT源码剖析(一)之总览
介绍随着网络带宽延时产品的增加,常用的TCP协议开始变得低效。这是因为它的AIMD算法彻底的减少了拥塞窗口,但不能快速的恢复可用带宽。理论上的流量分析表明TCP在BDP增高的情况下比较容易受到包损失攻击。另外,继承自TCP拥塞控制的不公平的RTT也成为在分布式数据密集程序中的严重问题。拥有不同RTT的并发TCP流将不公平地分享带宽。尽管在小的BDP网
Wesley13
•
3年前
2018年全国多校算法寒假训练营练习比赛(第一场)G 圆圈
链接:https://www.nowcoder.com/acm/contest/67/G(https://www.oschina.net/action/GoToLink?urlhttps%3A%2F%2Fwww.nowcoder.com%2Facm%2Fcontest%2F67%2FG)来源:牛客网时间限制:C/C1秒,其他语
Wesley13
•
3年前
2020中国系统架构师大会活动回顾:ZEGO实时音视频服务架构实践
10月24日,即构科技后台架构负责人&高级技术专家祝永坚(jack),受邀参加2020中国系统架构师大会,在音视频架构与算法专场进行了主题为《ZEGO实时音视频服务架构实践》的技术分享。以下为演讲内容的节选:作为一家专业的音视频云服务商,即构服务了泛娱乐、在线教育、金融、产业互联网、IoT等行业的多家头部公司,例如映客、花椒、微博、好未来等。今年上半
可莉
•
3年前
211毕业,2020最新字节后端三面面经分享,算法还是让我很为难
注:本场面试在疫情期间三月份拿到的字节offer基本条件本人是底层211本科,无科研经历,但是有一些项目经历,在国内监控行业某头部企业做过一段时间的实习。想着投一下字节,可以积累一下面试经验和为春招做准备.投了简历之后,过了一段时间,HR就打电话跟我约时间,在年后进行远程面。说明一下,我投的是北京office。
Wesley13
•
3年前
2012年底总结
跟风写一下,也顺便反省一下自己这一年。年头一次偶然的机会,忘了是找啥开源软件,在百度里搜一下,就来到这,现在是我每天必上的网站,另外一个是微博,QQ空间已经置废。感谢"oschina"这个平台,能让自己稀里糊涂的跟着折腾了很多开源软件,接触了github,在上面“fork”一些大牛(当时玩的是微软C,幸好没走远,学习到了一些有意思的算法)
个推技术实践
•
2年前
个推TechDay直播预告 | 8月24日晚19:30,实时数仓搭建保姆级教程开课!
当下,企业的实时计算需求越来越高频,很多企业和组织选择建设实时数据仓库,以敏捷支撑实时报表分析、智能算法推荐、系统风险预警等多元业务场景需求。相比离线数仓,实时数仓有哪些特性?如何进行实时数仓的技术选型?个推TechDay“治数训练营”系列直播课第二期来了!8月24日(下周三)晚上19:3020:30,个推资深数据研发工程师为您解读实时数仓架构演进,分享实时
天翼云开发者社区
•
5个月前
CBAM注意力模型介绍
近年来,注意力机制在各项深度学习任务中表现出色。研究表明,人类视觉感知过程中,注意力机制发挥了积极的效果,可以帮助人们高效和自适应的处理视觉信息并聚焦于显著的画面区域,从而能够做出最准确的判断。因此,通过模拟视觉注意力机制,在网络结构中加入注意力模块,使模型可以更加关注待分类图像中的关键信息,抑制不相关的特征信息,促使模型对重要的特征区域更加敏感,从而有效提升相关任务的性能。本文简要介绍一种经典的混合注意力模型CBAM。
1
•••
129
130
131
•••
137