Cobar提出的一种在分库场景下对Order By / Limit 的优化

捉虫大师
• 阅读 691

搜索关注微信公众号"捉虫大师",后端技术分享,架构设计、性能优化、源码阅读、问题排查、踩坑实践。 本文已收录 https://github.com/lkxiaolou/lkxiaolou 欢迎star。

Cobar 虽然是一款“古老”的数据库中间件,但目前不少公司仍然在用它,且它包含了不少有意思的算法和实现,今天就来分享 Cobar 提出的一种在分库场景下对 Order By / Limit 的优化。

原算法描述参考: https://github.com/alibaba/cobar/blob/master/doc/cobarSolution.ppt

背景

Cobar 最重要的功能就是分库分表,通常读取性能瓶颈可以通过增加从库或缓存来解决。

但写入性能在 MySQL 上只能通过分库分表来提升。

当我们把数据分布到不同的数据库上时,再查询时如果是单条数据只要找到这条数据对应的库即可,但如果是多条数据,可能分布在不同的库上时,Cobar 就需要先查询,再聚合。 Cobar提出的一种在分库场景下对Order By / Limit 的优化

来个具体例子:

Cobar提出的一种在分库场景下对Order By / Limit 的优化

如果我们要查询 tb1 表的 c1 字段,且取 c1 正序的下标(从0开始)为4、5的数据。假设分了三个库,我们为了取到正确数据,需要去这三个分库都取下标0-5的数据,假设取到如下数据:

Cobar提出的一种在分库场景下对Order By / Limit 的优化

取到3堆已排序的数据,对这3堆数据从小开始丢弃0、1、2、3号数据,保留第4、5号数据即是我们需要的。

Cobar提出的一种在分库场景下对Order By / Limit 的优化

这个算法看起来没啥问题,但如果数据量稍微变化一下,比如:

select c1 from tb1 order by c1 limit 9999999, 4

如果还按照上述的方法来做,首先得去每个分库查询 0 - 10000003的数据,然后再合并丢弃0-9999998号数据。

相当于丢弃了大约不分库时3倍的数据。这多少显得有点浪费了。

算法优化

  • Step1:将这条语句拆分成3条语句发给3个分库:

Cobar提出的一种在分库场景下对Order By / Limit 的优化

  • Step2:找出查询结果的最大和最小值,这里假设最小值为3,最大值为11

Cobar提出的一种在分库场景下对Order By / Limit 的优化

  • Step3:以最小值和最大值为条件再次查询

Cobar提出的一种在分库场景下对Order By / Limit 的优化

假设我们取得的数据如图,那么我们是不是很容易推断出这些结果之前还有多少数据?

  • Step4:反查出每一个返回结果的 offset,这里我们就能推断出分库1在最小值之前还有3333332条数据,分库2在最小值之前还有3333333条数据,分库3在最小值之前还有3333331条数据

Cobar提出的一种在分库场景下对Order By / Limit 的优化

这时,我们就可以丢弃合并后的0-9999998号数据了,分库1、2、3将最小值之前的数据都丢弃共丢弃了0-9999995号数据,再丢弃3个最小值3刚好够到了9999998,所以9999999号数据开始依次是4、5、5、6

Cobar提出的一种在分库场景下对Order By / Limit 的优化

算法分析

效率

以上例来说明,未优化前:

  • 1次查询,查询的数据总量大约 3kw,丢弃9999999条数据

优化后:

  • 第1次查询,查询数据总量约 1kw
  • 第2次查询,数据总量17
  • 丢弃3条数据

从这个例子可以看出,查询的数据量大大减少,需要计算丢弃的量也大大减少

非理想情况

可能大家能看出来,上述例子是非常理想的情况,如果数据没这么“理想”,结局又是怎样?

  • Step4 中反查的最小值之前不够丢弃怎么办,比如:

Cobar提出的一种在分库场景下对Order By / Limit 的优化

  • Step4 中反查的最小值之前的数据比需要丢弃的数据多怎么办?

Cobar提出的一种在分库场景下对Order By / Limit 的优化

可以看出,如果是这两种情况,这种算法就没法再次生效了。

优化的前提

根据上述两种情况来看,可以总结出该算法生效的前提是:

数据(排序字段)在各个分库上的分布要均匀

其实可以做个极端的假设,比如只有第一个分库上有数据,其他数据库没有数据,那么这个算法就失效了

总结

这么来看,这个算法是不是很废?确实比较废,就连 Cobar 中也没有使用。

但在某些场景下还是有比较大的提升的,分库的数据大部分时候是按字段进行取模,所以可以认为几乎是分布均匀的,此时如果 Order By / Limit 是比较深度翻页的数据,可以采取此策略,但也要进行兜底,如果返回的数据不满足条件,继续退化为最初的算法,所以单次效率可能不高,但从统计值上来看其效率可能是更高的。


搜索关注微信公众号"捉虫大师",后端技术分享,架构设计、性能优化、源码阅读、问题排查、踩坑实践。

Cobar提出的一种在分库场景下对Order By / Limit 的优化

点赞
收藏
评论区
推荐文章
blmius blmius
3年前
MySQL:[Err] 1292 - Incorrect datetime value: ‘0000-00-00 00:00:00‘ for column ‘CREATE_TIME‘ at row 1
文章目录问题用navicat导入数据时,报错:原因这是因为当前的MySQL不支持datetime为0的情况。解决修改sql\mode:sql\mode:SQLMode定义了MySQL应支持的SQL语法、数据校验等,这样可以更容易地在不同的环境中使用MySQL。全局s
捉虫大师 捉虫大师
2年前
大厂偏爱的Agent技术究竟是个啥
搜索关注微信公众号"捉虫大师",后端技术分享,架构设计、性能优化、源码阅读、问题排查、踩坑实践。hello大家好,我是小楼,今天给大家分享一个关于Agent技术的话题,也是后端启示录的第3篇文章。通过本文你可以了解到如下内容:什么是Agent技术为了解释什么是Agent技术,我在网上搜了一圈,但没有找到想要的结果。反倒是搜到了不少JavaAgent技术,
皕杰报表之UUID
​在我们用皕杰报表工具设计填报报表时,如何在新增行里自动增加id呢?能新增整数排序id吗?目前可以在新增行里自动增加id,但只能用uuid函数增加UUID编码,不能新增整数排序id。uuid函数说明:获取一个UUID,可以在填报表中用来创建数据ID语法:uuid()或uuid(sep)参数说明:sep布尔值,生成的uuid中是否包含分隔符'',缺省为
待兔 待兔
3个月前
手写Java HashMap源码
HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程22
捉虫大师 捉虫大师
3年前
小白也能看懂的dubbo3应用级服务发现详解
搜索关注微信公众号"捉虫大师",后端技术分享,架构设计、性能优化、源码阅读、问题排查、踩坑实践。本文已收录https://github.com/lkxiaolou/lkxiaolou欢迎star。dubbo是一款开源的RPC框架,主要有3个角色:提供者(provider)、消费者(consumer)、注册中心(registry)提供者启动时向
捉虫大师 捉虫大师
3年前
案例分享 | dubbo 2.7.12 bug导致线上故障
本文已收录https://github.com/lkxiaolou/lkxiaolou欢迎star。搜索关注微信公众号"捉虫大师",后端技术分享,架构设计、性能优化、源码阅读、问题排查、踩坑实践。背景最近某天的深夜,刚洗完澡就接到业务方打来电话,说他们的dubbo服务出故障了,要我协助排查一下。电话里,询问了他们几点是线上有损故障吗?——是止损
Wesley13 Wesley13
3年前
mysql设置时区
mysql设置时区mysql\_query("SETtime\_zone'8:00'")ordie('时区设置失败,请联系管理员!');中国在东8区所以加8方法二:selectcount(user\_id)asdevice,CONVERT\_TZ(FROM\_UNIXTIME(reg\_time),'08:00','0
Wesley13 Wesley13
3年前
00:Java简单了解
浅谈Java之概述Java是SUN(StanfordUniversityNetwork),斯坦福大学网络公司)1995年推出的一门高级编程语言。Java是一种面向Internet的编程语言。随着Java技术在web方面的不断成熟,已经成为Web应用程序的首选开发语言。Java是简单易学,完全面向对象,安全可靠,与平台无关的编程语言。
Wesley13 Wesley13
3年前
MySQL部分从库上面因为大量的临时表tmp_table造成慢查询
背景描述Time:20190124T00:08:14.70572408:00User@Host:@Id:Schema:sentrymetaLast_errno:0Killed:0Query_time:0.315758Lock_
Python进阶者 Python进阶者
9个月前
Excel中这日期老是出来00:00:00,怎么用Pandas把这个去除
大家好,我是皮皮。一、前言前几天在Python白银交流群【上海新年人】问了一个Pandas数据筛选的问题。问题如下:这日期老是出来00:00:00,怎么把这个去除。二、实现过程后来【论草莓如何成为冻干莓】给了一个思路和代码如下:pd.toexcel之前把这