深度学习基础 (包括前馈神经网络反向传播和卷积网络反向传播)
聊一聊深度学习(三天肝完深度学习基础,球球让我过吧!!)最近有场考试!!所以来过一遍深度学习,记录一些笔记备考看老师的ppt与花书,双管齐下应对深度学习(保佑我不挂吧!!)废话结束!引言人工智能领域的流派1.符号主义:逻辑主义,心理学派(推理期,心理期)2.连接主义:仿生学派或生理学派(殊途同归,各有所长)机器学
不是海碗 不是海碗
1年前
银行卡识别OCR:解放金融业务处理效率的黑科技!
银行卡识别OCR是通过光学字符识别(OCR)技术实现的。它基于深度学习算法,通过卷积神经网络(CNN)对银行卡图片进行特征提取和分析,从而识别出银行卡上的各个字段。
深度学习与图神经网络学习分享:Transformer 整体结构
在过去的几年中,神经网络的兴起与应用成功推动了模式识别和数据挖掘的研究。许多曾经严重依赖于手工提取特征的机器学习任务(如目标检测、机器翻译和语音识别),如今都已被各种端到端的深度学习范式(例如卷积神经网络(CNN)、长短期记忆(LSTM)和自动编码器)彻底改变了。曾有学者将本次人工智能浪潮的兴起归因于三个条件,分别是:·计算资源的快速发展(如GPU)·大
Wesley13 Wesley13
3年前
(Python)零起步数学+神经网络入门
在这篇文章中,我们将在Python中从头开始了解用于构建具有各种层神经网络(完全连接,卷积等)的小型库中的机器学习和代码。最终,我们将能够写出如下内容:!(https://oscimg.oschina.net/oscnet/0175308382f710229769726b918cd61e121.jpg)假设你对神经网络已经有一定的了解,这篇文章的
Wesley13 Wesley13
3年前
ICDM论文:探索跨会话信息感知的推荐模型
!(https://oscimg.oschina.net/oscnet/up4ea0253ae770020da87ce8c1506dab54e2d.JPEG)会话推荐(SessionbasedRecommendation)是推荐领域的一个子分支,美团平台增长技术部也在该领域不断地进行探索。不久前,该部门提出的跨会话信息感知的时间卷积神经网络模
基于空域时空图卷积的步态情绪识别方法
步态轨迹是一帧帧图结构数据,图结构就是由点和边组成的非欧几里得数据。图结构数据与欧几里得数据,还是存在很大的差距,所以不能直接将卷积操作应用于图结构数据上,从而产生了专门处理图结构数据的图卷积操作。图卷积分为两种:基于空域和基于频域。本文介绍的是基于基于空域图卷积的步态情绪识别方法。
使用深度学习进行图像分类
解决任何真实问题的重要一步是获取数据。Kaggle提供了大量不同数据科学问题的竞赛。我们将挑选一个2014年提出的问题,然后使用这个问题测试本章的深度学习算法,并在第5章中进行改进,我们将基于卷积神经网络(CNN)和一些可以使用的高级技术来改善图像识别模型的性能。大家可以从https://www.kaggle.com/c/dogsvscats/data下载数
图解:卷积神经网络数学原理解析
图解:卷积神经网络数学原理解析源自:数学中国过去我们已经知道被称为紧密连接的神经网络。这些网络的神经元被分成若干组,形成连续的层。每一个这样的神经元都与相邻层的每一个神经元相连。下图显示了这种体系结构的一个示例。图1.密集连接的神经网络结构当我们根据一组有限的人工设计的特征来解决分类问题时,这种方法很有效。例如,我们根据足球运动员在比赛期间的统计数据来预测
四儿 四儿
1年前
点云标注的算法优化与性能提升
点云标注的算法优化和性能提升是提高自动驾驶技术的关键因素。通过优化算法和提升性能,可以获得更准确、更高效的结果。首先,算法优化可以通过使用先进的深度学习模型和算法来实现。例如,使用三维卷积神经网络(CNN)可以提取点云中的特征信息,提高障碍物检测和车道线标