基于空域时空图卷积的步态情绪识别方法

天翼云开发者社区
• 阅读 194

本文分享自天翼云开发者社区《基于空域时空图卷积的步态情绪识别方法》,作者:w****n

步态轨迹是一帧帧图结构数据,图结构就是由点和边组成的非欧几里得数据。图结构数据与欧几里得数据,还是存在很大的差距,所以不能直接将卷积操作应用于图结构数据上,从而产生了专门处理图结构数据的图卷积操作。图卷积分为两种:基于空域和基于频域。本文介绍的是基于基于空域图卷积的步态情绪识别方法。

空域卷积通过将相邻节点的信息进行聚合来类比传统卷积。结合MPNN(消息传递网络)的思想,空域卷积在形式上可以分解为两个过程:第一个过程是确定每个节点的邻域节点并将节点的信息传递给相邻的节点;第二个过程是节点获取到相邻节点信息后,需要经过相乘求和的方法将信息进行聚合,从而实现节点的状态更新。

基于Shif时空图卷积的步态情绪识别网络 1.shift 卷积算子介绍 Shift卷积算子将二维卷积分为空间域和通道域的卷积。首先在每个通道的空间域中实现Shift操作,然后在通道域中进行 的卷积操作,从而实现对特征的提取。因为在整个操作中,只有通道域的 卷积操作中存在需要学习的参数,所以与普通二维卷积相比,大大降低了模型参数量。因而在应对少样本的训练问题中,可以得到不错的识别效果。Shift卷积的具体操作如图1-1所示。Shift操作通过将填充后的特征与特定的卷积核(卷积核中只有一个元素为1,其余都为0)进行卷积操作,从而实现特征向特定方向的平移。为了减少搜索的空间,可以选择多个通道为一个组,在这个组中每个通道的特征进行相同方向的平移。

基于空域时空图卷积的步态情绪识别方法 图1-1 全局Shift图卷积操作

2.shift时空图卷积网络 Shift时空图卷积网络(Shift-Spatial and temporal Graph Convolutional Network,Shift-STGCN)就是将Shift卷积平移再卷积的思想用在了图卷积上,实现用较少的参数却能有效地提取图结构特征。图结构是非欧几里得结构的数据,传统的Shift卷积算子是将欧几里得结构的数据进行一行或者一列的平移,所以不能直接用在图结构上。因此Shift图卷积操作与传统的Shift卷积算子存在一定的差异。

Shift图卷积的设计精妙之处在于:通过将节点的通道特征进行平移,实现将节点信息传递给其他节点,然后再通过1x1的卷积操作实现了节点状态的更新。通过较少的参数量和计算量就完成了空域图卷积的两个过程。Shift图卷积分两种:局部Shift图卷积和全局Shift图卷积。

局部shift图卷积只考虑了图结构的连接关系。假设有个节点b,该节点共有个通道特征,有个邻接的节点,则将通道均匀划分为个片区,每个片区包含了个通道。将这些片区依次分配给自节点和邻接节点进行填充,即将邻接节点对应位置的特征通过上下平移从而实现填充。以七节点图为例,局部Shift图卷积操作流程如图1-2所示。

基于空域时空图卷积的步态情绪识别方法 图1-2 局部Shift图卷积操作

局部Shift图卷积由于只考虑关节点的固有连接,这样会自动忽略掉不相邻节点之间的关系。例如一个人在开心的时候,双手的摆幅会增大,故而会使用基节点和手节点之间的距离来表征,但是这两个节点并不是直接连接的。所以不相邻节点的隐藏关系很难通过局部Shift图卷积获取到。

第二种就是全局Shift图卷积。这种卷积就是假设所有的节点都存在相连的关系。全局Shift图卷积将每个通道都作为一个分区,从自身节点开始,依次将其他节点相应位置的特征通过平移填补到一个个分区中。依次进行循环平移填补直到填满最后一个通道。经过平移填补操作之后,特征图就会呈现一个螺旋的状况。全局Shift操作如图1-3所示。

基于空域时空图卷积的步态情绪识别方法 图1-3 全局Shift图卷积操作

全局Shift图卷积的优点在于能够关注到所有节点之间的关系,但是相对应的,也忽略了关节之间最根本的固有连接。因此添加了一个可学习的掩码Mask。掩码就是在数据上盖上一层掩膜,给予每个特征点表征重要性的权值,从而起到筛选和选择的效果。将Mask与Shift卷积后的特征相乘以达到区分不同节点特征重要程度的作用,从而解决上述忽略固有连接的问题。

通过全局Shift图卷积提取每一帧图结构数据的空域特征后,再经过时域Shift卷积提取时域特征,构成完成的Shift时空图卷积网络。

时域Shift卷积:选定一个参数 ,表示当前帧数据会获取到前 帧和后 帧的信息,将当前时刻 的特征通道均匀分为 份分区,然后通过Shift操作将前后帧的特征平移填补到相应的分区。而后进行 卷积实现时域的特征提取。

Shift操作与 卷积操作的结合有两种方式。第一种方式是Shift-1x1Conv,第二种方式是Shift-1x1Conv-Shift,第二种方式能够获得更大的感受野,因此识别效果更好。Shift时空图卷积模块的结果如图1-4所示。

基于空域时空图卷积的步态情绪识别方法 图 1-4 Shift时空图卷积模块

Shift时空图卷积网络就是由上述的九个shift时空图卷积模块串联得到。每个子模块都将shift图卷积和时域shift卷积嵌套到了残差模块中。

点赞
收藏
评论区
推荐文章
小天 小天
2年前
图数据库简介
概况图数据库(Graphdatabase,GDB)是一个使用图结构进行语义查询的数据库,它使用节点、边和属性来表示和存储数据。该系统的关键概念是图,它直接将存储中的数据项,与数据节点和节点间表示关系的边的集合相关联。图形数据库应用场景非常
MLtech MLtech
3年前
图神经网络(Graph Neural Networks)概述
论文:AComprehensiveSurveyonGraphNeuralNetworks一篇关于图神经网络的综述文章,着重介绍了图卷积神经网络(GCN),回顾了近些年的几个主要的图神经网络的的体系:图注意力网络、图自编码机、图生成网络、图时空网络。1、介绍传统的机器学习所用到的数据是欧氏空间(Euclidea
一种基于实时大数据的图指标解决方案
在电商、金融风控领域,使用图来建模,将大量的人员和事件编织成一张庞大的图关系网络,构建图指标来识别异常人员和群体风险行为,目前图指标现有实现方式是基于离线数据或t1数据构建图关系网络,图指标由业务人员或需求人员根据业务需要提出具体需求由开发人员临时开发、测试、部署、上线。
Wesley13 Wesley13
3年前
C语言数据结构之图的基本操作
本博文是是博主在学习数据结构图的这一章知识时做的一些总结,代码运行环境:visualstudio2017纯C语言,当然掌握了方法,你也可以试着用其它的语言来实现同样的功能。下面的程序主要实现了对有向图,有向网,无向图,无向网,无向图的深度优先遍历,广度优先遍历,有向无环图的拓扑排序功能等。主要代码实现如下:1pragmao
Wesley13 Wesley13
3年前
Java 数据结构
简要本文主要介绍数据结构以及在Java中有哪些直接可用的数据结构(不涉及并发编程使用场景)。常见的数据结构下面直接介绍的常见的数据结构:数组(Array)、栈(Stack)、队列(Queue)、链表(LinkedList)、树(Tree)、堆(Heap)、散列表(Hash)、图(Graph)数组(Array)
Wesley13 Wesley13
3年前
Java数据结构和算法(十五)——无权无向图
前面我们介绍了树这种数据结构,树是由n(n0)个有限节点通过连接它们的边组成一个具有层次关系的集合,把它叫做“树”是因为它看起来像一棵倒挂的树,包括二叉树、红黑树、234树、堆等各种不同的树,有对这几种树不了解的可以参考我前面几篇博客。而本篇博客我们将介绍另外一种数据结构——图,图也是计算机程序设计中最常用的数据结构之一,从数学意义上讲
Stella981 Stella981
3年前
GraphX 在图数据库 Nebula Graph 的图计算实践
不同来源的异构数据间存在着千丝万缕的关联,这种数据之间隐藏的关联关系和网络结构特性对于数据分析至关重要,图计算就是以图作为数据模型来表达问题并予以解决的过程。!图计算实践(https://wwwcdn.nebulagraph.com.cn/nebulablog/practicegraphxnebulagraphalgorithm.png
Stella981 Stella981
3年前
Python数据结构与算法——图
图的定义!(https://oscimg.oschina.net/oscnet/upf5b4e14079290acba3893a5c5cb1585ca01.png)图(graph)是由一些点(vertex)和这些点之间的连线(edge)所组成的;其中,点通常称为顶点(vertex),而点到点之间的连线通常称之为边或者弧(edge)
Stella981 Stella981
3年前
B+Tree索引为什么可以支持千万级别数据量的查找——讲讲mysql索引的底层数据结构
MySQL索引底层数据结构索引是存储引擎快速找到记录的一种数据结构一、有索引与没索引的差距先来看一张图:!(https://static.oschina.net/uploads/img/202010/14150116_INlJ.png)左边是没有索引的情况,右边是作为
菜园前端 菜园前端
1年前
什么是图?
原文链接:什么是图?图是网络结构的抽象模型,是一组由边连接的节点。图可以表示任何二元关系,比如道路、航班等。在JavaScript中没有图,但是可以通过Object和Array来构建图。常用操作深度优先遍历广度优先遍历图的表示法邻接矩阵邻接表关联矩阵...
天翼云开发者社区
天翼云开发者社区
Lv1
天翼云是中国电信倾力打造的云服务品牌,致力于成为领先的云计算服务提供商。提供云主机、CDN、云电脑、大数据及AI等全线产品和场景化解决方案。
文章
740
粉丝
16
获赞
40