题目描述
给定一个二叉树,判断其是否是一个有效的二叉搜索树。
假设一个二叉搜索树具有如下特征:
节点的左子树只包含小于当前节点的数。 节点的右子树只包含大于当前节点的数。 所有左子树和右子树自身必须也是二叉搜索树。
输入:
5
/ \
1 4
/ \
3 6
输出: false
解释: 输入为: [5,1,4,null,null,3,6]。
根节点的值为 5 ,但是其右子节点值为 4 。
解题思路
对于左子树的所有节点值来说,最小值为min,最大值为root 对于右子树的所有节点值来说,最小值为root,最大值为max
验证是否是一个二叉搜索树,对于左子树中每个右节点的值(右子树中每个左节点的值)需要保证其在最近遍历过的两个节点的范围之间,同时还需要保证对于其父节点符合左子树小于父节点,右子树大于父节点,这样得到的二叉树便是二叉搜索树。
解题代码
class Solution {
public boolean isValidBST(TreeNode root) {
return isValidBST(root, Long.MIN_VALUE, Long.MAX_VALUE);
}
public boolean isValidBST(TreeNode root, long minVal, long maxVal) {
if (root == null)
return true;
if (root.val >= maxVal || root.val <= minVal)
return false;
return isValidBST(root.left, minVal, root.val) && isValidBST(root.right, root.val, maxVal);
}
}