图像分割方法属于AI研究热点

四儿
• 阅读 376

虽然近年来图像分割的研究成果越来越多,但由于图像分割本身所具有的难度,使研究仍然存在一些问题,现有的许多种算法都是针对不同的图像,并没有一种普遍适用的分割算法。迄今为止,没有一个好的通用的分割评价标准,如何对分割结果作出量化的评价是一个值得研究的问题,该量化测度应有助于视觉系统中的自动决策及评价算法的优劣,该测度应考虑到均质性、对比度、紧致性、连续性、心理一视觉感知等因素,伴随着数字图像处理的应用领域不断扩大,实时处理技术已成研究的热点,在实时图像处理系统中,算法的运行时间也成为今后研究的方向和目标。

  虽然图像分割目前尚无通用的理论,但是近年来大量学者致力于将新概念、新方法应用于图像分割,结合特定理论的图像分割方法在图像分割方面取得了较好的应用效果。如小波分析和小波变换、神经网络、遗传算法等数学工具的利用,有效地改善了分割效果用。

图像分割方法是将相邻的像素连接起来形成一个区域,且同一个区域内的像素必须具有某种相似性。这类分割方法往往根据像素点的灰度值、纹理、统计特征和颜色等来建立联系,保证同一区域内具有相似性和连续性,但分割效果的优劣表现出对相似性条件具有强烈的依赖性,且分割结果极易出现过分割。基于区域的图像分割方法主要包括分裂合并和区域生长。分裂合并法首先分裂整幅图像,然后通过某种准则判断分裂区域的相似性,合并相邻的相似分裂区域,得到分割结果。区域生长法需事先设定相似性原则和生长种子,从生长种子出发将满足相似性原则的相邻像素不断合并,构成一个区域,达到划分区域完成图像分割的目的,其中最关键的是相似性原则的设定和生长种子的选取。

ZhuSong等提出了一种结合Snake模型的几何特征与区域增长的统计特征的分割方法,该算法首先利用区域生长将图像分割层若干区域,再利用贝叶斯和最小描述长度进行区域竞争,合并坏种子所在的区域,从而得到正确的分割图像。张馄等提出了一种自适应分裂合并的聚类算法,通过定义空间连通率,并利用中垂线分割来对聚类进行自适应地分裂合并。

图像分割方法属于AI研究热点

  基于区域的图像分割技术主要用来识别图像中具有特性相似的区域,要求同 一区域的像素具有相似的特征且连通,正因为这样,它具有消除孤立噪声点的能力。但是,区域生长法对种子点的选取要求很高,选取的结果将直接影响图像分 割的效果。分裂合并法虽然不需要选择生长种子点,但是其分割效果与分裂程度 之间存在一个很大的矛盾,即当分裂相对充分时,具有较好的分割效果,但分割 的时间和工作量将增大;若要提高效率只能减少分裂工作,这将影响分割的质量

  1. 基于遗传算法的图像分割

  遗传算法是模拟自然界生物进化过程与机制求解问题的一类自组织与自适应的人工智能技术。对此,科学家们进行了大量的研究工作,并成功地运用于各种类型的优化问题,在分割复杂的图像时,人们往往采用多参量进行信息融合,在多参量参与的最优值求取过程中,优化计算是最重要的,把自然进化的特征应用到计算机算法中,将能解决很多问题。遗传算法的出现为解决这类问题提供了新而有效的方法,不仅可以得到全局最优解,而且大量缩短了计算时间。提出的基于信息融合技术的彩色图像分割方法,该方法应用剥壳技术将问题的复杂度降低,然后将信息融合技术应用到彩色图像分割中,为彩色分割在不同领域中的应用提供了一种新的思路与解决办法。

  1. 基于人工神经网络技术的图像分割

基于神经网络的分割方法的基本思想是先通过训练多层感知器来得到线性决策函数,然后用决策函数对像素进行分类来达到分割的目的。近年来,随着神经学的研究和进展,第三代脉冲耦合神经网络(PCNN)作为一种新型人工神经网络模型,其独特处理方式为图像分割提供了新的思路。

脉冲耦合神经网络具有捕获特性,会产生点火脉冲传播,对输入图像具有时空整合作用,相邻的具有相似输入的神经元倾向于同时点火。因此对于灰度图像,PCNN具有天然的分割能力,与输入图像中不同目标区域对应的神经元在不同的时刻点火,从而将不同区域分割开来。如果目标区域灰度分布有重叠,由于PCNN的时空整合作用,如果灰度分布符合某种规律,PCNN也能克服灰度分布重叠所带来的不利影响,从而实现较完美的分割 。这是其一个突出的优点,而这恰恰是其他的分割方法所欠缺的,其在未来的图像分割中将起主导作用。

  1. 基于分析和变换的图像分割性和多分辨率分析能力,在图像处理等领域得到了广泛的应用。变换是一种多尺度多通道分析工具,比较适合对图像进行多尺度的边缘检测。从图像处理角度看,变换具有“变焦”特性,在低频段可用高频率分辨率和低时间分辨率,在高频段可用低频率分辨率和高时间分辨率,交换在实现上有快速算法具有多分辨率,也叫多尺度的特点,可以由粗及精地逐步观察信号等优点。

如果您需要手势识别数据集,欢迎访问数据堂

近年来多进制开始用于边缘检测。另外,把变换和其它方法结合起来的图像分割技术也是现在研究的热点。

点赞
收藏
评论区
推荐文章
小尉迟 小尉迟
1年前
PS画画工具推荐:ps怎么黄金分割构图
ps怎么黄金分割构图?PS的这款黄金分割插件GoldenCurve可以快速生成多款不同图形构图的预览线,比如常见的对角构图,九宫格构图,黄金比例构图等等。来看看怎么用吧。mac版下载:ps怎么黄金分割构图在「窗口扩展功能黄金分割线」中打开该插件,将图像分辨
Karen110 Karen110
3年前
Python-OpenCV获取图像轮廓的图像处理方法
一、引言在《OpenCV阈值处理函数threshold处理32位彩色图像的案例》介绍了threshold函数,但threshold的图像阈值处理对于某些光照不均的图像,这种全局阈值分割的方法并不能得到好的效果。图像阈值化操作中,我们更关心的是从二值化图像中分离目标区域和背景区域,仅仅通过固定阈值很难达到理想的分割效果。在图片中的灰度是不均匀的,所以通常情
Stella981 Stella981
3年前
BraTS18——多模态MR图像脑肿瘤分割挑战赛
之前挑战赛的数据都是以CT图像为主,而医学影像还有其他模态,例如核磁共振成像。今天我将分享如何对多模态MR图像脑肿瘤进行分割处理。为了方便大家学习理解整个分割流程,我将整个流程步骤进行了整理,并给出每个步骤的结果,希望对大家有所帮助。一、脑肿瘤图像分析与预处理(1)、获取多模态MR图像属性信息。读取原始图像,显示图像大小,Spacing信
Stella981 Stella981
3年前
Android OpenCV(二十二):边缘检测
边缘检测什么是图像的边缘?图像的边缘是图像最基本的特征之一。所谓边缘(或边沿)是指周围像素灰度有跳跃性变化或“屋顶”变化的那些像素的集合。边缘是图像局部强度变化最明显的地方,它主要存在于目标与目标、目标与背景、区域与区域之间,因此它是图像分割依赖的重要特征。从本质上说,图像边缘是图像局部特性不连续性(灰度突变、颜色突变、纹理结构
Wesley13 Wesley13
3年前
AI圈凡尔赛:你读那么多论文有什么用,还不如我复现 1 篇!
深度之眼招募人工智能Paper讲师,兼职时间一年可赚30w,招聘详情见文章底部。学计算机视觉千万不能错过图像分割!它是图像理解领域关注的一个热点!是图像分析的第一步!是图像理解的基础,也是图像处理中最困难的问题之一。近些年来随着深度学习技术的逐步深入,图像分割技术迅猛发展,与之相关
Stella981 Stella981
3年前
BraTS18——多模态MR图像脑肿瘤分割挑战赛续
!(https://oscimg.oschina.net/oscnet/ed6b352f2e0735ea0a39fd7797f7232a830.jpg)前面已经分享过对多模态MR图像脑肿瘤进行分割处理的例子。今天将继续分享使用多分类Focalloss函数来训练分割网络。为了方便大家学习理解整个分割流程,我将整个流程步骤进行了整理,并给出每个步骤的结果
Stella981 Stella981
3年前
OpenCV阈值化处理
图像的阈值化就是利用图像像素点分布规律,设定阈值进行像素点分割,进而得到图像的二值图像。图像阈值化操作有多种方法,常用方法有经典的OTSU、固定阈值、自适应阈值、双阈值及半阈值化操作。这里对各种阈值化操作进行一个总结。OTSU阈值化在阈值化处理中,常用的算法就是OTSU。发明人是NobuyukiOstu。这种二值化操作阈值的选取非常重要,阈
Stella981 Stella981
3年前
BraTS18——多模态MR图像脑肿瘤分割挑战赛续3
前面的文章中只对损失函数进行了不同尝试,今天将从网络结构上进行改进提出融合VNet模型来分割脑肿瘤。为了方便大家学习理解整个分割流程,我将整个流程步骤进行了整理,并给出每个步骤的结果,希望对大家有所帮助。一、脑肿瘤图像分析与预处理(1)、多模态MR脑肿瘤图像分析。分析的过程基本上跟上一篇一致,这里就不多言了,直接从数据处理开始。(2)
Wesley13 Wesley13
3年前
unet网络讲解,附代码
转:http://www.cnblogs.com/gujianhan/p/6030639.htmlkey1:FCN对图像进行像素级的分类,从而解决了语义级别的图像分割(semanticsegmentation)问题。与经典的CNN在卷积层之后使用全连接层得到固定长度的特征向量进行分类(全联接层+softmax输出)不同,FCN可以接受任意尺寸的