徐小夕 徐小夕
4年前
基于React+Koa实现一个h5页面可视化编辑器
前言前段时间笔者一直忙于数据可视化方面的工作,比如如何实现拖拽式生成可视化大屏,如何定制可视化图表交互和数据导入方案等,这块需求在B端企业中应用非常大,所以非常有探索价值。本篇文章并非和数据可视化相关,而是通过抽象技术底层,将其应用于H5页面可视化搭建上,通过技术的手段实现拖拽式生成H5页面。这块也有非常多的应用场景,比如我们需要开发一个移动端网站,一
Wesley13 Wesley13
3年前
java实现多项式的加法
今天学习链表的时候看到了多项式的加法,使用c语言链表编写,我现在一直在用java,采用面对对象的思想做了一下多项式由三个部分组成:常数、系数和未知数(A、B、X等的)。多项式的加法规则是相同系数、相同未知数的常数可以进行相加,组成一个新的项,而不同系数或者不同未知数的,则不能进行相加减,应将其写到后面。我的多项式相加的想法是:先对一个用户输入的混乱的多项
Wesley13 Wesley13
3年前
6个顶级动态数据可视化工具
作为一名数据分析师,一提到动态数据可视化就会感到莫名兴奋,我认为数据可视化有两个非常重要的部分:一个是动态,一个是数据可视化。要使数据分析真正有价值和有洞察力,就需要高质量的动态可视化工具。市场上有很多产品,特点和价格各不相同,本文列出了一些广泛认可的工具,我们来一起了解一下数据动态可视化制作工具。一、数据动态可视化制作工具——Smartbi可视化B
Wesley13 Wesley13
3年前
D3D12学习笔记3.3——仿射变换
·仿射变换是由一个线性变换与一个平移变换组合而成。对于向量来说平移操作是没有意义的,而平移变换只能应用于点。·齐次坐标表示,是将原先的三元组扩展成四元组,第四个坐标w的取值将根据被描述对象是点还是向量而定。具体如下:w0是向量,w1是点。·说完两个基本概念后,我们来说说仿射变换的具体公式:!a(u)\iota(u)b
Wesley13 Wesley13
3年前
mysql触发器 当记录的指定字段发生变化时,更新表中的另外一个字段,或者更新另外一张关联表中关联记录的字段
注意:语句中出现的old,new,now(),都为数据库自带的关键字,此处不做解释。两种情况:    第一种:一张表中,更新某条记录的其中的一个字段,触发指定的触发器,记录时间即更新到这条记录中的另一个字段中。    第二种:两张表,当A表更新其中某条记录的某个字段时,触发指定的触发器,更新B表与A表关联的记录的某个字段。对于
Wesley13 Wesley13
3年前
IP地址的组成及简单分类
IP地址有两部分组成,一部分为网络地址,另一部分为主机地址。所谓IP地址就是给每个连接在Internet上的主机分配的一个32bit地址。IP地址有两部分组成,一部分为网络地址,另一部分为主机地址。网络类别最大网络数第一个可用的网络号最后一个可用的网络号每个网络中的最大主机数A 126112616777214B 1638
Stella981 Stella981
3年前
Excel图表和数据分析
十年前写的,从今天看起来之前的想法还是比较幼稚的。从理论指导角度,数据分析可以划分为基于统计学的和基于数据挖掘的数据分析方法,很显然基于统计学的相对容易理解一些,而数据挖掘对高等数学要求会高一些,相信毕业十几年的同学很可能连A\X\\2B\XC0都快忘记了,甚至我不确定等小孩上了初中能不能教的了他数学。从分析的出发点看,数据分析
Wesley13 Wesley13
3年前
vim部分命令
前言Vim是一个超级牛的编辑器,可以说是专为程序员设计的编辑器,强大的有些不可思议。不过其学习曲线稍显陡峭,前两天在网上找到一个小图表,比较全,如果对表中所列的命令学习熟悉以后,处理日常的文本就已经足够,所以贴出来,大家参考参考。Vim的牛B之处不在于其功能之繁多,更不在于其学习曲线之陡峭,而在于这些命令大都可以进行组合,比如,9yy命令表示
使用对等连接在天翼云两个用户的云网络之间架起一座天桥
想象一下,某区园里面有栋楼,两栋楼里的某两家公司业务来往非常密切,员工经常需要当面沟通。但是从这栋楼走到另一栋楼,需要下到一楼,走过一条街,再上另一栋楼。某天,A公司的老板说,我们直接修一座天桥到B公司所在楼的办公室去吧。其实这样的桥很多,比如著名的吉隆坡双子塔,双塔中间就有一座天桥连接起来。在云计算中,同样有类似的业务场景:两家不同的公司因为有业务往来,他
小万哥 小万哥
6个月前
NumPy 均匀分布模拟及 Seaborn 可视化教程
本文介绍了均匀分布和逻辑分布。均匀分布是连续概率分布,所有事件在指定范围内有相等概率发生,常用于随机数生成。其概率密度函数为f(x)1/(ba),其中a和b分别为下限和上限。NumPy的random.uniform()可生成均匀分布的随机数。Seaborn可用于可视化分布。文中还提供了练习及解决方案,包括生成不同范围的均匀分布随机数、比较分布形状变化及模拟抛硬币实验。逻辑分布则常用于S形增长现象的建模,其PDF为(scale/(π(1(xloc)/scale)^2)),由位置参数loc和尺度参数scale定义。