Irene181 Irene181
3年前
一篇文章带你搞懂非关系型数据库MongoDB
大家好,我是黄伟。今天给大家介绍芒果数据库,一起来看看吧。前言Mongodb,分布式文档存储数据库,由C语言编写,旨在为WEB应用提供可扩展的高性能数据存储解决方案。MongoDB是一个高性能,开源,无模式的文档型数据库,是当前NoSql数据库中比较热门的一种。它在许多场景下可用于替代传统的关系型数据库或键/值存储方式。下面我们来说说它的具体用法吧。
Irene181 Irene181
3年前
一篇文章带你搞懂非关系型数据库MongoDB
大家好,我是黄伟。今天给大家介绍芒果数据库,一起来看看吧。前言Mongodb,分布式文档存储数据库,由C语言编写,旨在为WEB应用提供可扩展的高性能数据存储解决方案。MongoDB是一个高性能,开源,无模式的文档型数据库,是当前NoSql数据库中比较热门的一种。它在许多场景下可用于替代传统的关系型数据库或键/值存储方式。下面我们来说说它的具体用法吧。
Stella981 Stella981
3年前
IM开发基础知识补课(三):快速理解服务端数据库读写分离原理及实践建议
本文正文部分引用了58同城架师沈剑的文章,非常感谢他的分享。1、前言IM应用从服务端数据的角度来看,它是一种很特殊的应用场景,抛开基础数据、增值业务和附属功能不谈,单从IM聊天工具的立身之本——聊天数据来说,理论上是不需要在服务端存储的(或者说只需要短暂存储——比如离线消息,上线即拉走),这也是为什么微信在前段时间号称绝不存储用户聊天数
可莉 可莉
3年前
2016Qcon上海之旅
主要是大数据应用方向早上第一个听了IBM企业海量数据以及全面云数据服务实践,主要介绍了IBM云计算的应用场景,主要是介绍IBM在云数据服务方面的应用,主要是分享了几个客户案例,其中一个是央视的西藏骑行的电视直播,中间涉及物理设备数据采集,背后实时的数据分析,结合地理位置数据,地图以及运动员数据同时支持可视化,提升活动本身的参与性,整体全部基于
Stella981 Stella981
3年前
2016Qcon上海之旅
主要是大数据应用方向早上第一个听了IBM企业海量数据以及全面云数据服务实践,主要介绍了IBM云计算的应用场景,主要是介绍IBM在云数据服务方面的应用,主要是分享了几个客户案例,其中一个是央视的西藏骑行的电视直播,中间涉及物理设备数据采集,背后实时的数据分析,结合地理位置数据,地图以及运动员数据同时支持可视化,提升活动本身的参与性,整体全部基于
Wesley13 Wesley13
3年前
30分钟入门图数据库(精编版)
之前在公司内部以推文为教材做过一些简单的入门培训,最近有个契机需要对外直播选个主题,就把这个入门课程重新编排了一下,内容也更加的丰富。因为是入门课程,我会从关系数据库到NoSQL的历史,从NoSQL到图,从图的概念到图建模,从建模到场景,这样一个循序渐进的过程来展开。另外通过这个入门课程试水,看看外部对这个图领域的培训需求有多大,就目前来说这个市场是基本
Stella981 Stella981
3年前
Redis缓存穿透问题及解决方案
上周在工作中遇到了一个问题场景,即查询商品的配件信息时(商品:配件为1:N的关系),如若商品并未配置配件信息,则查数据库为空,且不会加入缓存,这就会导致,下次在查询同样商品的配件时,由于缓存未命中,则仍旧会查底层数据库,所以缓存就一直未起到应有的作用,当并发流量大时,会很容易把DB打垮。缓存穿透问题缓存穿透是指查询一个根本不存在的数
Wesley13 Wesley13
3年前
IP地址定位技术之一:基础数据采集
IP地理位置定位技术,包含基础数据采集、硬件系统搭建、应用场景划分和定位系统研发四项关键技术。基础数据采集为IP地理位置定位技术的研究提供基础数据支撑,是IP地址定位的基础性工作和关键技术。首先,按照不同的数据采集规则,针对不同数据源的数据格式,研究并实现一套自动化的智能化的数据采集技术;其次,对采集到的数据进行筛选、清洗和挖掘,形成基础数据库,为系统提
Easter79 Easter79
3年前
TiDB 整体架构及到底有什么用
据我所知,目前很多公司都在生产环境使用TiDB了,例如:小米,小红书,饿了吗,美团等。如今硬件的性价比越来越高,网络传输速度越来越快,数据库分层的趋势逐渐显现,人们已经不再强求用一个解决方案来解决所有的存储问题,而是通过分层,让缓存与数据库负责各自擅长的业务场景。当前数据库领域面临各种问题,如在缩放、一致性、大数据分析、与云基础架构集成等方面均存在
恭喜天翼云“翼起飞”战队在CCF国际AIOps挑战赛中夺得亚军
近日,2022CCF国际AIOps挑战赛在北京圆满落幕,由天翼云研发二部云终端基础平台团队组成的“翼起飞”战队以优越的成绩斩获本次挑战赛决赛亚军。此次赛题设计源于AIOps的核心场景——故障快速发现与诊断,比赛数据基于微服务架构的模拟电商系统,要求参赛选手在云环境下完成算法模型调优、线上评测等操作。历经紧张激烈的角逐和层层选拔,全球百支参赛队伍中仅有9支队