Easter79 Easter79
3年前
TinyML
在小型设备运行MachineLearning,通常面临着三大挑战 功耗(powerconsumption)延时(latency)精度(Accuracy)人们通常比较了解MachineLearning,因为它与神经网络相关(pertaintoneuralnetworks),那么TinyMNL又是什么呢?
Stella981 Stella981
3年前
SpringBoot 深度调优,JVM 调优(深度好文)
!(https://oscimg.oschina.net/oscnet/a6bb2fbe1d0246a2b44a0fb01d4071ef.jpg)作者:星朝cnblogs.com/jpfss/p/9753215.html项目调优作为一名工程师,项目调优这事,是必须得熟练掌握的事情。
Stella981 Stella981
3年前
CPU推理性能提高数十倍,旷视天元计算图、MatMul优化深度解读
  机器之心发布  机器之心编辑部  !(http://dingyue.ws.126.net/2020/0806/6a6e4896j00qemtzy001ad000p000aop.jpg)本文针对旷视天元深度学习框架在推理优化过程中所涉及的计算图优化与MatMul优化进行深度解读。  背景及引言  在深度学
Stella981 Stella981
3年前
MindSpore手写数字识别初体验,深度学习也没那么神秘嘛
摘要:想了解深度学习却又无从下手,不如从手写数字识别模型训练开始吧!深度学习作为机器学习分支之一,应用日益广泛。语音识别、自动机器翻译、即时视觉翻译、刷脸支付、人脸考勤……不知不觉,深度学习已经渗入到我们生活中的每个角落,给生活带来极大便利。即便如此,依然有很多人觉得深度学习高深莫测、遥不可及,的确,它有深奥之处,非专业人士难以企及,但也有亲
流体力学深度学习建模技术研究进展
流体力学深度学习建模技术研究进展王怡星、韩仁坤、刘子扬、张扬、陈刚摘要:深度学习技术在图像处理、语言翻译、疾病诊断、游戏竞赛等领域已带来了颠覆性的变化。流体力学问题由于维度高、非线性强、数据量大等特点,恰恰是深度学习擅长并可以带来研究范式创新的重要领域。目前,深度学习技术已在流体力学领域得到了初步应用,其应用潜力逐渐得到证实。以流体力学深度学习技术为背景,
深度学习|基于MobileNet的多目标跟踪深度学习算法
源自:控制与决策作者:薛俊韬马若寒胡超芳摘要针对深度学习算法在多目标跟踪中的实时性问题,提出一种基于MobileNet的多目标跟踪算法.借助于MobileNet深度可分离卷积能够对深度网络模型进行压缩的原理,将YOLOv3主干
胡赤儿 胡赤儿
1年前
AI一键去衣技术:窥见深度学习在图像处理领域的革命
AI一键去衣技术:窥见深度学习在图像处理领域的革命随着人工智能技术的飞速发展,深度学习在图像处理领域展现出了强大的潜力。其中,一键去衣(AIbasedClothingRemoval)技术作为其炙手可热的一个分支,吸引了广泛的关注。这项技术利用深度学习算法,