序列数据和文本的深度学习
序列数据和文本的深度学习用于构建深度学习模型的不同文本数据表示法:理解递归神经网络及其不同实现,例如长短期记忆网络(LSTM)和门控循环单元(GatedRecurrentUnit,GRU),它们为大多数深度学习模型提供文本和序列化数据;为序列化数据使用一维卷积。可以使用RNN构建的一些应用程序如下所示。文档分类器:识别推文或评论的情感,对新闻文章
ElasticSearch深度分页详解
1前言ElasticSearch是一个实时的分布式搜索与分析引擎,常用于大量非结构化数据的存储和快速检索场景,具有很强的扩展性。纵使其有诸多优点,在搜索领域远超关系型数据库,但依然存在与关系型数据库同样的深度分页问题,本文就此问题做一个实践性
仲远 仲远
2年前
图片照片编辑Photoshop 2022 for Mac(ps 2022)
Photoshop2023forMac是数字图像处理和编辑的行业标准,提供了全面的专业修饰工具包,并具有旨在激发灵感的强大编辑功能。Photoshop带有大量图像处理工具,旨在帮助您轻松而又精确地修饰照片。
深度学习调参小册
谷歌大脑的五位深度学习大佬在“ChineseNewYear”期间合作推出了《深度学习调参手册(https://github.com/googleresearch/tuning_playbooksettingupexperimenttracking)》,来为各位深度学习爱好者恭贺新年(我猜的),一时间好评如潮,获星过万,看来大家都是苦调参久已。难道依靠经验的调参变得“可解释”了?显然不是,而是大佬们分享自己的调参经验,内容还是挺多的,下面咱们去粗取精,希望能够获得飞升。
Easter79 Easter79
4年前
TensorFlow On Flink 原理解析
作者:陈戊超(仲卓),阿里巴巴技术专家深度学习技术在当代社会发挥的作用越来越大。目前深度学习被广泛应用于个性化推荐、商品搜索、人脸识别、机器翻译、自动驾驶等多个领域,此外还在向社会各个领域迅速渗透。背景当前,深度学习的应用越来越多样化,随之涌现出诸多优秀的计算框架。其中TensorFlow,PyTorch,MXNeT作为广泛使用
Easter79 Easter79
4年前
TiDB HTAP 深度解读
HTAP(HybridTransactional/AnalyticalProcessing)是近些年需求不断受到关注的技术名词,它描述了一个数据库能够同时满足交易以及分析两种作业。TiDB4.0是一个针对HTAP进行了特别的设计和架构强化,这次给大家带来一篇VLDB2020HTAP主题的论文解读,比较特殊的是这篇论文是PingCA
Wesley13 Wesley13
4年前
MXNET:深度学习计算
我们将深入讲解模型参数的访问和初始化,以及如何在多个层之间共享同一份参数。之前我们一直在使用默认的初始函数,net.initialize()。frommxnetimportinit,ndfrommxnet.gluonimportnnnetnn.Sequential()net.add(n
文本的深度学习
序列数据和文本的深度学习用于构建深度学习模型的不同文本数据表示法:理解递归神经网络及其不同实现,例如长短期记忆网络(LSTM)和门控循环单元(GatedRecurrentUnit,GRU),它们为大多数深度学习模型提供文本和序列化数据;为序列化数据使用一维卷积。可以使用RNN构建的一些应用程序如下所示。文档分类器:识别推文或评论的情感,对新闻文章
卷积神经网络模型发展及应用
卷积神经网络模型发展及应用转载地址:http://fcst.ceaj.org/CN/abstract/abstract2521.shtml深度学习是机器学习和人工智能研究的最新趋势,作为一个十余年来快速发展的崭新领域,越来越受到研究者的关注。卷积神经网络(CNN)模型是深度学习模型中最重要的一种经典结构,其性能在近年来深度学习任务上逐步提高。由于可以自动学