Wesley13 Wesley13
3年前
APM监控
一,基础知识储备分布式跟踪的目标一个分布式系统由若干分布式服务构成,每一个请求会经过多个业务系统并留下足迹,但是这些分散的数据对于问题排查,或是流程优化都很有限,要能做到追踪每个请求的完整链路调用,收集链路调用上每个服务的性能数据,计算性能数据和比对性能指标(SLA),甚至能够再反馈到服务治理中,那么这就是分布式跟踪的目标。分布式跟踪的目的
Stella981 Stella981
3年前
MapReduce编程模型和计算框架架构原理
Hadoop解决大规模数据分布式计算的方案是MapReduce。MapReduce既是一个编程模型,又是一个计算框架。也就是说,开发人员必须基于MapReduce编程模型进行编程开发,然后将程序通过MapReduce计算框架分发到Hadoop集群中运行。我们先看一下作为编程模型的MapReduce。MapReduce编程模型
Stella981 Stella981
3年前
MapReduce 基本原理(MP用于分布式计算)
hadoop最主要的2个基本的内容要了解。上次了解了一下HDFS,本章节主要是了解了MapReduce的一些基本原理。MapReduce文件系统:它是一种编程模型,用于大规模数据集(大于1TB)的并行运算。MapReduce将分为两个部分:Map(映射)和Reduce(归约)。当你向mapreduce框架提交一个计算作业,它会首先把计算作业分成若干个
Stella981 Stella981
3年前
MapReduce原理和WordCount数据详细过程
1.MapReduce原理 1.1MapReduce简介     MapReduce是一种分布式计算模型,是Google提出的,主要用于搜索领域,解决海量数据的计算问题。   MR有两个阶段组成:Map和Reduce,用户只需实现map()和reduce()两个函数,即可实现分布
Stella981 Stella981
3年前
Hive中collect_list全局保持顺序
我用部署的是standalone模式,local单节点计算的时候,结果没问题,当集群计算的时候因为是分布式的,因此结果是乱序的。解决方法如下:有以下Hive表的定义:createtabletopic_recommend_score(category_idint,topic_idbigint,scoredouble
Stella981 Stella981
3年前
Fourinone四合一分布式计算框架整体介绍
FourInOne(中文名字“四不像”)是一个四合一分布式计算框架,在写这个框架之前,我对分布式计算进行了长时间的思考,也看了老外写的其他开源框架,当我们把复杂的hadoop当作一门学科学习时,似乎忘记了我们想解决问题的初衷:我们仅仅是想写个程序把几台甚至更多的机器一起用起来计算,把更多的cpu和内存利用上,来解决我们数量大和计算复杂的问题,当然这个过程中要
Stella981 Stella981
3年前
Spark学习之路 (十七)Spark分区
一、分区的概念  分区是RDD内部并行计算的一个计算单元,RDD的数据集在逻辑上被划分为多个分片,每一个分片称为分区,分区的格式决定了并行计算的粒度,而每个分区的数值计算都是在一个任务中进行的,因此任务的个数,也是由RDD(准确来说是作业最后一个RDD)的分区数决定。二、为什么要进行分区  数据分区,在分布式
Stella981 Stella981
3年前
Dubbo分布式服务+Springmvc容器+Maven项目整合,分布式,kakfka消息中间件整合
互联网的发展,网站应用的规模不断扩大,常规的垂直应用架构已无法应对,分布式服务架构以及流动计算架构势在必行,Dubbo是一个分布式服务框架,在这种情况下诞生的。现在核心业务抽取出来,作为独立的服务,使前端应用能更快速和稳定的响应。!分布式框架介绍kafkaeekafkaee的博客(http://img0.ph.126.net/Goz2T
黄忠 黄忠
12个月前
大数据硬核技能进阶:Spark3实战智能物业运营系统(分享)
大数据硬核技能进阶:Spark3实战智能物业运营系统(分享)download》https://www.sisuoit.com/4688.htmlApacheSpark是一个用于大数据处理的开源框架,其强大的计算能力和高效的分布式计算模型使得它在大数据领域占
边缘计算与MEC浅谈
边缘计算是在靠近物或数据源头的网络边缘侧,通过融合网络、计算、存储、应用核心能力的分布式开放平台,就近提供边缘智能服务。简单点讲,边缘计算是将从终端采集到的数据,直接在靠近数据产生的本地设备或网络中进行分析,无需再将数据传输至云端数据处理中心。