MapReduce原理和WordCount数据详细过程

Stella981
• 阅读 813

1.MapReduce原理

 1.1 MapReduce简介  

   MapReduce是一种分布式计算模型,是Google提出的,主要用于搜索领域,解决海量数据的计算问题。

   MR有两个阶段组成:Map和Reduce,用户只需实现map()和reduce()两个函数,即可实现分布式计算

 1.2 MapReduce工作原理

   MapReduce分为2个过程,分别为Map过程和Reduce过程,如下图所示:

   MapReduce原理和WordCount数据详细过程

  Map端  

  1)每个输入分片会让一个map任务来处理,默认情况下,以HDFS的一个块的大小(默认为64M)为一个分片,当然我们也可以设置块的大小。map输出的结果会暂且放在一个环形内存缓冲区中(该缓冲区的大小默认为100M,由io.sort.mb属性控制),当该缓冲区快要溢出时(默认为缓冲区大小的80%,由io.sort.spill.percent属性控制),会在本地文件系统中创建一个溢出文件,将该缓冲区中的数据写入这个文件。

  2)在写入磁盘之前,线程首先根据reduce任务的数目将数据划分为相同数目的分区,也就是一个reduce任务对应一个分区的数据。这样做是为了避免有些reduce任务分配到大量数据,而有些reduce任务却分到很少数据,甚至没有分到数据的尴尬局面。其实分区就是对数据进行hash的过程。然后对每个分区中的数据进行排序,如果此时设置了Combiner,将排序后的结果进行Combine操作,这样做的目的是让尽可能少的数据写入到磁盘。

  3)当map任务输出最后一个记录时,可能会有很多的溢出文件,这时需要将这些文件合并。合并的过程中会不断地进行排序和combine操作,目的有两个:1.尽量减少每次写入磁盘的数据量;2.尽量减少下一复制阶段网络传输的数据量。最后合并成了一个已分区且已排序的文件。为了减少网络传输的数据量,这里可以将数据压缩,只要将mapred.compress.map.out设置为true就可以了。

  4)将分区中的数据拷贝给相对应的reduce任务。分区中的数据怎么知道它对应的reduce是哪个呢?其实map任务一直和其父TaskTracker保持联系,而TaskTracker又一直和JobTracker保持心跳,所以JobTracker中保存了整个集群中的宏观信息。只要reduce任务向JobTracker获取对应的map输出位置即可

  Reduce端 

  1)Reduce会接收到不同map任务传来的数据,并且每个map传来的数据都是有序的。如果reduce端接受的数据量相当小,则直接存储在内存中(缓冲区大小由mapred.job.shuffle.input.buffer.percent属性控制,表示用作此用途的堆空间的百分比),当数据量超过该缓冲区大小的一定比例(由mapred.job.shuffle.merge.percent决定),则对数据合并后溢写到磁盘中。

  2)随着溢写文件的增多,后台线程会将它们合并成一个更大的有序的文件,这样做是为了给后面的合并节省时间。其实不管在map端还是reduce端,MapReduce都是反复地执行排序,合并操作。排序是hadoop的灵魂。

  3)合并的过程中会产生许多的中间文件(写入磁盘),但MapReduce会让写入磁盘的数据尽可能地少,并且最后一次合并的结果并没有写入磁盘,而是直接输入到reduce函数。

2.WordCount数据流程

  在WordCount中,Map首先处理的数据经过分片获取输入,以键值对的形式,然后通过Map的切割,切割成一个个单词,然后把每个单词的计数标记为1,并且写到环形内存缓冲区中,排序、合并,写到分区中。

  在Reduce段,每个Reduce把每个Map处理的数据中同一个patition的数据拷贝过来,并且经过排序、合并,数据格式类似<Hello,list(1,3,2)>,形成Reudce数据输入。最后才写道HDFS或其他渠道中。

  其完整流程如下图:

 MapReduce原理和WordCount数据详细过程

   为了更加方便地描述,我自己画了一张图,来形容这个过程

 MapReduce原理和WordCount数据详细过程

   这是我对整个流程一些浅薄地见解,有什么不明白地欢迎留言

  参考网站:

  https://blog.csdn.net/fanxin\_i/article/details/80388221

  https://www.cnblogs.com/laowangc/p/8961946.html

  https://www.cnblogs.com/riordon/p/4605022.html

点赞
收藏
评论区
推荐文章
blmius blmius
3年前
MySQL:[Err] 1292 - Incorrect datetime value: ‘0000-00-00 00:00:00‘ for column ‘CREATE_TIME‘ at row 1
文章目录问题用navicat导入数据时,报错:原因这是因为当前的MySQL不支持datetime为0的情况。解决修改sql\mode:sql\mode:SQLMode定义了MySQL应支持的SQL语法、数据校验等,这样可以更容易地在不同的环境中使用MySQL。全局s
皕杰报表之UUID
​在我们用皕杰报表工具设计填报报表时,如何在新增行里自动增加id呢?能新增整数排序id吗?目前可以在新增行里自动增加id,但只能用uuid函数增加UUID编码,不能新增整数排序id。uuid函数说明:获取一个UUID,可以在填报表中用来创建数据ID语法:uuid()或uuid(sep)参数说明:sep布尔值,生成的uuid中是否包含分隔符'',缺省为
待兔 待兔
4个月前
手写Java HashMap源码
HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程22
Jacquelyn38 Jacquelyn38
3年前
2020年前端实用代码段,为你的工作保驾护航
有空的时候,自己总结了几个代码段,在开发中也经常使用,谢谢。1、使用解构获取json数据let jsonData  id: 1,status: "OK",data: 'a', 'b';let  id, status, data: number   jsonData;console.log(id, status, number )
Stella981 Stella981
3年前
MapReduce之Shuffle,自定义对象,排序已经Combiner
1\.Shuffle:MapReduce的计算模型主要分为三个阶段,Map,shuffle,Reduce。Map负责数据的过滤,将文件中的数据转化为键值对,Reduce负责合并将具有相同的键的值进行处理合并然后输出到HDFS。为了让Reduce可以并行处理map的结果,必须对Map的输出进行一定的排序和分割,然后交个Red
Stella981 Stella981
3年前
Python之time模块的时间戳、时间字符串格式化与转换
Python处理时间和时间戳的内置模块就有time,和datetime两个,本文先说time模块。关于时间戳的几个概念时间戳,根据1970年1月1日00:00:00开始按秒计算的偏移量。时间元组(struct_time),包含9个元素。 time.struct_time(tm_y
Easter79 Easter79
3年前
Twitter的分布式自增ID算法snowflake (Java版)
概述分布式系统中,有一些需要使用全局唯一ID的场景,这种时候为了防止ID冲突可以使用36位的UUID,但是UUID有一些缺点,首先他相对比较长,另外UUID一般是无序的。有些时候我们希望能使用一种简单一些的ID,并且希望ID能够按照时间有序生成。而twitter的snowflake解决了这种需求,最初Twitter把存储系统从MySQL迁移
Stella981 Stella981
3年前
MapReduce 基本原理(MP用于分布式计算)
hadoop最主要的2个基本的内容要了解。上次了解了一下HDFS,本章节主要是了解了MapReduce的一些基本原理。MapReduce文件系统:它是一种编程模型,用于大规模数据集(大于1TB)的并行运算。MapReduce将分为两个部分:Map(映射)和Reduce(归约)。当你向mapreduce框架提交一个计算作业,它会首先把计算作业分成若干个
Wesley13 Wesley13
3年前
MySQL部分从库上面因为大量的临时表tmp_table造成慢查询
背景描述Time:20190124T00:08:14.70572408:00User@Host:@Id:Schema:sentrymetaLast_errno:0Killed:0Query_time:0.315758Lock_
Python进阶者 Python进阶者
10个月前
Excel中这日期老是出来00:00:00,怎么用Pandas把这个去除
大家好,我是皮皮。一、前言前几天在Python白银交流群【上海新年人】问了一个Pandas数据筛选的问题。问题如下:这日期老是出来00:00:00,怎么把这个去除。二、实现过程后来【论草莓如何成为冻干莓】给了一个思路和代码如下:pd.toexcel之前把这