Easter79 Easter79
3年前
tensorflow 之循环神经网络
应用场景:应用于语音识别语音翻译机器翻译RNNRNN(RecurrentNeuralNetworks,循环神经网络)不仅会学习当前时刻的信息,也会依赖之前的序列信息。由于其特殊的网络模型结构解决了信息保存的问题。所以RNN对处理时间序列和语言文本序列问题有独特的优势。递归神经网络都具有一连串重复神经网络模
MLtech MLtech
3年前
图神经网络(Graph Neural Networks)概述
论文:AComprehensiveSurveyonGraphNeuralNetworks一篇关于图神经网络的综述文章,着重介绍了图卷积神经网络(GCN),回顾了近些年的几个主要的图神经网络的的体系:图注意力网络、图自编码机、图生成网络、图时空网络。1、介绍传统的机器学习所用到的数据是欧氏空间(Euclidea
可莉 可莉
3年前
21张让你代码能力突飞猛进的速查表(Python、数据科学、深度学习、可视化、数据结构算法等)
随着人工智能大数据的蓬勃发展,越来越多的小伙伴们开始使用python作为主打代码,python有着种类繁多的第三方库。为大家从网络上收集了一些代码速查表,包括深度神经网络、机器学习、数据可视化、python基础、科学计算、数据科学等等,希望可以帮你在码代码时提速。都是高清彩色大图!!(https://oscimg.osch
Wesley13 Wesley13
3年前
7天搞定图神经网络,实战助力新冠疫情防控!
点击左上方蓝字关注我们!(https://oscimg.oschina.net/oscnet/up73c93dd40612aaa3c513622a0e81e3de.gif)要问这几年一直在逆势而上的技术有哪些?你一定不会忽略它——图神经网络。相比传统神经网络,图神经网络的优势非常明显:1、非顺序排序的特征学习:G
递归神经网络(RNN)
递归神经网络(RNN)RNN是最强大的模型之一,它使我们能够开发如分类、序列数据标注、生成文本序列(例如预测下一输入词的SwiftKeykeyboard应用程序),以及将一个序列转换为另一个序列(比如从法语翻译成英语的语言翻译)等应用程序。大多数模型架构(如前馈神经网络)都没有利用数据的序列特性。例如,我们需要数据呈现出向量中每个样例的特征,如表示句子、段
胡赤儿 胡赤儿
10个月前
人工智能换声技术:突破声音界限的奇迹
在当今数字化时代,人工智能(AI)技术的发展已经带来了许多惊人的创新,其中之一便是声音合成技术的飞速发展。AI换声技术是指利用深度学习和神经网络等先进技术,使计算机能够模仿、修改或生成人类的声音。这项技术不仅令人惊叹,而且在各个领域都有着广泛的应用,从娱乐
胡赤儿 胡赤儿
9个月前
从原理到应用探索深度学习的技术
随着大数据和计算能力的飞速发展,深度学习作为人工智能领域的一个重要分支,已经引起了广泛的关注和研究。深度学习通过模拟人脑神经网络的运作方式,使得机器能够学习并理解数据的内在规律和特征,从而实现更高级别的智能化。本文将深入探讨深度学习的基本原理、关键技术及其