浅谈生成式人工智能
生成式人工智能是指:利用机器学习技术让计算机自动生成不同模态(比如文本,图片,语音等)高质量数据的方法。尽管过去几十年的人工智能研究迭代出了无数的生成模型,但生成式人工智能被当成一种新的算力来讨论还要从以GPT3为代表的大预训练语言模型算起。
数据堂 数据堂
2年前
语音合成数据——打开未来人机交互的新篇章
随着人工智能技术的日新月异,语音合成数据的技术也得以快速发展。语音合成,即通过计算机技术生成逼真的语音,是人工智能领域的重要组成部分。本文将深入探讨语音合成数据的发展历程、应用场景以及未来前景。一、语音合成技术的发展历程自20世纪50年代初以来,语音合成技
数据堂 数据堂
1年前
情感语音识别的技术挑战与解决方案
一、引言情感语音识别是指通过计算机技术和人工智能算法自动识别和理解人类语音中的情感信息。尽管近年来已经取得了显著的进展,但该领域仍然面临着许多挑战。本文将探讨情感语音识别的技术挑战以及可能的解决方案。二、情感语音识别的技术挑战情感表达的复杂性和多变性:人的
手把手带你配置一个DHCP服务器 | 京东云技术团队
1前言最近部门内部成立一个网络兴趣小组,初衷是通过网络知识学习,在遇到网络问题时能够承担起一个与网络侧同学有效沟通的“连接人”的角色,求学这么多年其实也陆续学了不少的网络相关课程,本科的计算机网络、硕士的高等计网等,不过当时大多都停留在理论层面,趁此机会对
MES系统中的手动排产和自动排产-助力生产效率
​企业在排产管理中面临的问题:大多数的企业在调度排产过程中,都会遇到以下问题。首先是插单非常的多,计划调整困难,会经常性的发生原材料、零部件的备货不足。计划按MRP或库存展示计算出需求后将产生大量工单,这些工单无法全部确定生产顺序,车间按自身生产收益安排导
胡赤儿 胡赤儿
1年前
机器学习的技术原理、应用与挑战
在数字化浪潮的推动下,机器学习作为人工智能的核心技术之一,正以前所未有的速度改变着我们的生活和工作方式。机器学习通过模拟人类的学习过程,使计算机能够从数据中提取有用信息,并做出预测或决策。本文将深入探讨机器学习的技术原理、应用领域以及面临的挑战,以展现其深
胡赤儿 胡赤儿
1年前
从原理到应用探索深度学习的技术
随着大数据和计算能力的飞速发展,深度学习作为人工智能领域的一个重要分支,已经引起了广泛的关注和研究。深度学习通过模拟人脑神经网络的运作方式,使得机器能够学习并理解数据的内在规律和特征,从而实现更高级别的智能化。本文将深入探讨深度学习的基本原理、关键技术及其
小万哥 小万哥
1年前
NumPy 正态分布与 Seaborn 可视化指南
正态分布(高斯分布)是重要的概率模型,具有钟形曲线特征,由均值μ和标准差σ描述。NumPy的random.normal()可生成正态分布随机数,Seaborn库方便绘制分布图。正态分布广泛应用于统计学、机器学习、金融和工程等领域。练习包括生成正态分布数据、比较不同标准差影响及模拟考试成绩计算平均分和标准分。
小万哥 小万哥
1年前
NumPy 双曲函数与集合操作详解
NumPy概览:使用numpy.sinh(),numpy.cosh(),numpy.tanh()计算双曲函数;示例包括求弧度值的双曲正弦、余弦。此外,numpy.arcsinh(),numpy.arccosh(),numpy.arctanh()用于求反函数。同时,NumPy提供集合操作如numpy.unique()构建唯一元素数组,numpy.union1d()求并集,numpy.intersect1d()求交集,numpy.setdiff1d()求差集,numpy.setxor1d()求对称差。
京东云开发者 京东云开发者
11个月前
关于并发编程与线程安全的思考与实践
作者:京东健康张娜一、并发编程的意义与挑战并发编程的意义是充分的利用处理器的每一个核,以达到最高的处理性能,可以让程序运行的更快。而处理器也为了提高计算速率,作出了一系列优化,比如:1、硬件升级:为平衡CPU内高速存储器和内存之间数量级的速率差,提升整体性