把LangChain跑起来的3个方法 | 京东云技术团队

京东云开发者
• 阅读 296

使用LangChain开发LLM应用时,需要机器进行GLM部署,好多同学第一步就被劝退了,那么如何绕过这个步骤先学习LLM模型的应用,对Langchain进行快速上手?本片讲解3个把LangChain跑起来的方法,如有错误欢迎纠正。

Langchain官方文档地址: https://python.langchain.com/

基础功能

LLM 调用

  • 支持多种模型接口,比如 OpenAI、HuggingFace、AzureOpenAI …
  • Fake LLM,用于测试
  • 缓存的支持,比如 in-mem(内存)、SQLite、Redis、SQL
  • 用量记录
  • 支持流模式(就是一个字一个字的返回,类似打字效果)

Prompt管理,支持各种自定义模板

拥有大量的文档加载器,比如 Email、Markdown、PDF、Youtube …

对索引的支持

  • 文档分割器
  • 向量化
  • 对接向量存储与搜索,比如 Chroma、Pinecone、Qdrand

Chains

  • LLMChain
  • 各种工具Chain
  • LangChainHub

详细地址可参考:
https://www.langchain.cn/t/topic/35

测试Langchain工程的3个方法:

1 使用Langchian提供的FakeListLLM

为了节约时间,直接上代码

把LangChain跑起来的3个方法 | 京东云技术团队

import os
from decouple import config
from langchain.agents import initialize_agent
from langchain.agents import AgentType
from langchain.agents import load_tools

这里mock下ChatGPT,使用mockLLm

#from langchain.llms import OpenAI
from langchain.llms.fake import FakeListLLM
os.environ["OPENAI_API_KEY"] = config('OPENAI_API_KEY')

REPL 是 “Read–Eval–Print Loop”(读取-求值-打印-循环)的缩写,它是一种简单的、交互式的编程环境。

在 REPL 环境中,用户可以输入一条或多条编程语句,系统会立即执行这些语句并输出结果。这种方式非常适合进行快速的代码试验和调试。

tools = load_tools(["python_repl"])
responses=[
    "Action: Python REPL\nAction Input: chatGpt原理",
    "Final Answer: mock答案"
]
llm = FakeListLLM(responses=responses)
agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True)
agent.run("chatGpt原理2")

2 使用Langchian提供的HumanInputLLM,访问维基百科查询

把LangChain跑起来的3个方法 | 京东云技术团队

from langchain.llms.human import HumanInputLLM
from langchain.agents import load_tools
from langchain.agents import initialize_agent
from langchain.agents import AgentType
from wikipedia import set_lang

使用维基百科工具

tools = load_tools(["wikipedia"])

这里必须要设置为中文url前缀,不然访问不了

set_lang("zh")

初始化LLM

llm = HumanInputLLM(prompt_func=lambda prompt: print(f"\n===PROMPT====\n{prompt}\n=====END OF PROMPT======"))

初始化agent

agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True)
agent.run("喜羊羊")

3 使用huggingface

https://huggingface.co/docs

1.注册账号

2.创建Access Tokens

把LangChain跑起来的3个方法 | 京东云技术团队

Demo: 使用模型对文档进行摘要

把LangChain跑起来的3个方法 | 京东云技术团队

from langchain.document_loaders import UnstructuredFileLoader
from langchain.chains.summarize import load_summarize_chain
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain import HuggingFaceHub
import os
from decouple import config

from langchain.agents import load_tools

这里mock下ChatGPT,使用HUGGINGFACEHUB

os.environ["HUGGINGFACEHUB_API_TOKEN"] = config('HUGGINGFACEHUB_API_TOKEN')

导入文本

loader = UnstructuredFileLoader("docment_store\helloLangChain.txt")

将文本转成 Document 对象

document = loader.load()
print(f'documents:{len(document)}')

初始化文本分割器

text_splitter = RecursiveCharacterTextSplitter(
    chunk_size = 500,
    chunk_overlap = 0
)

切分文本

split_documents = text_splitter.split_documents(document)
print(f'documents:{len(split_documents)}')

加载 LLM 模型

overal_temperature = 0.1
flan_t5xxl = HuggingFaceHub(repo_id="google/flan-t5-xxl", 
                         model_kwargs={"temperature":overal_temperature, 
                                       "max_new_tokens":200}
                         ) 

llm = flan_t5xxl
tools = load_tools(["llm-math"], llm=llm)

创建总结链

chain = load_summarize_chain(llm, chain_type="refine", verbose=True)

执行总结链

chain.run(split_documents)

作者:京东科技 杨建

来源:京东云开发者社区

点赞
收藏
评论区
推荐文章
Wesley13 Wesley13
3年前
FLV文件格式
1.        FLV文件对齐方式FLV文件以大端对齐方式存放多字节整型。如存放数字无符号16位的数字300(0x012C),那么在FLV文件中存放的顺序是:|0x01|0x2C|。如果是无符号32位数字300(0x0000012C),那么在FLV文件中的存放顺序是:|0x00|0x00|0x00|0x01|0x2C。2.  
Wesley13 Wesley13
3年前
mysql设置时区
mysql设置时区mysql\_query("SETtime\_zone'8:00'")ordie('时区设置失败,请联系管理员!');中国在东8区所以加8方法二:selectcount(user\_id)asdevice,CONVERT\_TZ(FROM\_UNIXTIME(reg\_time),'08:00','0
Wesley13 Wesley13
3年前
MySQL部分从库上面因为大量的临时表tmp_table造成慢查询
背景描述Time:20190124T00:08:14.70572408:00User@Host:@Id:Schema:sentrymetaLast_errno:0Killed:0Query_time:0.315758Lock_
京东云开发者 京东云开发者
6个月前
直观易用的大模型开发框架LangChain,你会了没?
目前LangChain框架在集团大模型接入手册中的学习案例有限,为了让大家可以快速系统地了解LangChain大模型框架并开发,产出此文章。本文章包含了LangChain的简介、基本组件和可跑的代码案例(包含Embedding、Completion、Cha
LangChain:打造自己的LLM应用 | 京东云技术团队
1、LangChain是什么LangChain是一个框架,用于开发由LLM驱动的应用程序。可以简单认为是LLM领域的Spring,以及开源版的ChatGPT插件系统。核心的2个功能为:1)可以将LLM模型与外部数据源进行连接。2)允许与LLM模型与环境进行
京东云开发者 京东云开发者
11个月前
TS版LangChain实战:基于文档的增强检索(RAG) | 京东云技术团队
LangChainLangChain是一个以LLM(大语言模型)模型为核心的开发框架,LangChain的主要特性:可以连接多种数据源,比如网页链接、本地PDF文件、向量数据库等允许语言模型与其环境交互封装了ModelI/O(输入/输出)、Retrieva
高耸入云 高耸入云
9个月前
OJAC近屿智能带你解读:AIGC必备知识之Lang Chain
📖更多AI资讯请👉🏾LangChain,是一种先进的语言模型链技术,旨在通过串联多个专业化的语言模型,以解决复杂的自然语言处理(NLP)任务。这种方法不仅提高了处理特定任务的效率和准确性,还增强了模型的适应性和灵活性。基本原理:在LangChain中