- 引言 在短视频时代,快手作为国内领先的短视频平台之一,积累了海量的用户数据、视频内容和互动信息。这些数据对市场分析、用户行为研究、舆情监测等具有重要价值。本文将介绍如何使用Python爬虫技术采集快手数据,并基于NLP(自然语言处理)进行简单的舆情分析。
- 1 目标 ● 使用Python爬虫抓取快手短视频数据(如视频标题、播放量、评论等)。 ● 对评论数据进行情感分析,评估用户舆情倾向。 ● 使用数据可视化展示分析结果。
- 2 技术栈 ● 爬虫工具:requests、selenium(应对动态渲染) ● 数据解析:BeautifulSoup、json ● 反爬策略:User-Agent轮换、代理IP ● 数据分析:pandas、jieba(中文分词)、snownlp(情感分析) ● 可视化:matplotlib、wordcloud
- 快手数据采集
- 1 分析快手网页结构 快手的数据通常以动态加载(Ajax/JSON)方式呈现,直接请求HTML可能无法获取完整数据。因此,我们可以:
- 手动分析API接口(浏览器F12→Network→XHR)。
- 使用Selenium模拟浏览器行为,获取渲染后的数据。
- 2 获取快手视频数据(API方式)
快手的部分数据可通过接口获取,例如:
import json
代理信息
proxyHost = "www.16yun.cn" proxyPort = "5445" proxyUser = "16QMSOML" proxyPass = "280651"
构造代理URL(格式:http://用户名:密码@代理服务器:端口)
proxyUrl = f"http://{proxyUser}:{proxyPass}@{proxyHost}:{proxyPort}"
headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36" }
def fetch_kuaishou_videos(keyword="科技"): url = f"https://www.kuaishou.com/search/video?keyword={keyword}"
# 设置代理
proxies = {
"http": proxyUrl,
"https": proxyUrl,
}
try:
response = requests.get(url, headers=headers, proxies=proxies, timeout=10)
if response.status_code == 200:
data = response.json() # 假设返回的是JSON数据
videos = data.get("data", {}).get("videos", [])
for video in videos:
print(f"标题: {video['title']}, 播放量: {video['play_count']}")
else:
print("请求失败:", response.status_code)
except requests.exceptions.RequestException as e:
print("请求异常:", e)
fetch_kuaishou_videos()
注意:快手API可能有加密参数(如__NS_sig3),需进一步逆向分析。
2.3 使用Selenium抓取动态数据
如果API难以直接调用,可采用Selenium模拟浏览器操作:
``` from selenium import webdriver
from selenium.webdriver.common.by import By
import time
driver = webdriver.Chrome()
driver.get("https://www.kuaishou.com")
# 模拟搜索
search_box = driver.find_element(By.CSS_SELECTOR, "input.search-input")
search_box.send_keys("科技")
search_box.submit()
time.sleep(3) # 等待加载
# 获取视频列表
videos = driver.find_elements(By.CSS_SELECTOR, "div.video-item")
for video in videos:
title = video.find_element(By.CSS_SELECTOR, "h3.title").text
play_count = video.find_element(By.CSS_SELECTOR, "span.play-count").text
print(f"标题: {title}, 播放量: {play_count}")
driver.quit()
- 数据存储与清洗
采集的数据可存储至CSV或数据库:
data = [ {"title": "Python教程", "play_count": "10万"}, {"title": "AI技术", "play_count": "5万"} ]
df = pd.DataFrame(data) df.to_csv("kuaishou_videos.csv", index=False)
4. 舆情分析(情感分析)
4.1 数据预处理
使用jieba进行中文分词:
``` import jieba
from snownlp import SnowNLP
comments = ["这个视频很棒!", "内容一般,没什么新意"]
# 分词示例
for comment in comments:
words = jieba.cut(comment)
print("/".join(words))
# 情感分析(0~1,越接近1表示越正面)
for comment in comments:
sentiment = SnowNLP(comment).sentiments
print(f"评论: {comment}, 情感得分: {sentiment:.2f}")
4.2 可视化分析
from wordcloud import WordCloud
# 词云生成
text = " ".join(comments)
wordcloud = WordCloud(font_path="simhei.ttf").generate(text)
plt.imshow(wordcloud, interpolation="bilinear")
plt.axis("off")
plt.show()
# 情感分布
sentiments = [SnowNLP(c).sentiments for c in comments]
plt.hist(sentiments, bins=10, color="skyblue")
plt.xlabel("情感得分")
plt.ylabel("评论数量")
plt.title("快手评论情感分析")
plt.show()
- 反爬策略与法律合规 ● 反爬措施: ○ 使用代理IP池(如requests+proxy)。 ○ 随机User-Agent(fake_useragent库)。 ○ 控制请求频率(time.sleep)。 ● 法律合规: ○ 仅用于学习研究,避免商业滥用。 ○ 不抓取用户隐私数据(如手机号、身份证)。
- 结论 本文介绍了Python爬虫在快手数据采集与舆情分析中的应用,涵盖:
- 数据抓取(API/Selenium)。
- 数据清洗与存储(Pandas)。
- 情感分析与可视化(SnowNLP+Matplotlib)。 未来可优化方向: ● 结合机器学习进行更精准的舆情分类。 ● 使用分布式爬虫(Scrapy-Redis)提升采集效率。