Mysql索引优化

Wesley13
• 阅读 515

1 索引的类型

UNIQUE唯一索引

不可以出现相同的值,可以有NULL值。

INDEX普通索引

允许出现相同的索引内容。

PRIMARY KEY主键索引

不允许出现相同的值,且不能为NULL值,一个表只能有一个primary_key索引。

fulltext index 全文索引

上述三种索引都是针对列的值发挥作用,但全文索引,可以针对值中的某个单词,比如一篇文章中的某个词,然而并没有什么卵用,因为只有myisam以及英文支持,并且效率让人不敢恭维,但是可以用coreseek和xunsearch等第三方应用来完成这个需求。

2 索引的CURD

索引的创建

ALTER TABLE

适用于表创建完毕之后再添加。

ALTER TABLE 表名 ADD 索引类型 (unique,primary key,fulltext,index)[索引名](字段名)

ALTER TABLE `table_name` ADD INDEX `index_name` (`column_list`) -- 索引名,可要可不要;如果不要,当前的索引名就是该字段名。 
ALTER TABLE `table_name` ADD UNIQUE (`column_list`) 
ALTER TABLE `table_name` ADD PRIMARY KEY (`column_list`) 
ALTER TABLE `table_name` ADD FULLTEXT KEY (`column_list`)

CREATE INDEX

CREATE INDEX可对表增加普通索引或UNIQUE索引。

--例:只能添加这两种索引 
CREATE INDEX index_name ON table_name (column_list) 
CREATE UNIQUE INDEX index_name ON table_name (column_list)

另外,还可以在建表时添加:

CREATE TABLE `test1` ( 
  `id` smallint(5) UNSIGNED AUTO_INCREMENT NOT NULL, -- 注意,下面创建了主键索引,这里就不用创建了 
  `username` varchar(64) NOT NULL COMMENT '用户名', 
  `nickname` varchar(50) NOT NULL COMMENT '昵称/姓名', 
  `intro` text, 
  PRIMARY KEY (`id`),  
  UNIQUE KEY `unique1` (`username`), -- 索引名称,可要可不要,不要就是和列名一样 
  KEY `index1` (`nickname`), 
  FULLTEXT KEY `intro` (`intro`) 
) ENGINE=MyISAM AUTO_INCREMENT=4 DEFAULT CHARSET=utf8 COMMENT='后台用户表';

索引的删除

DROP INDEX `index_name` ON `talbe_name`  
ALTER TABLE `table_name` DROP INDEX `index_name` 
-- 这两句都是等价的,都是删除掉table_name中的索引index_name; 

ALTER TABLE `table_name` DROP PRIMARY KEY -- 删除主键索引,注意主键索引只能用这种方式删除

索引的查看

show index from tablename;

索引的更改

更改个毛线,删掉重建一个既可

3 创建索引的技巧

  • 维度高的列创建索引。
  • 数据列中不重复值出现的个数,这个数量越高,维度就越高。
  • 如数据表中存在8行数据a,b ,c,d,a,b,c,d这个表的维度为4。
  • 要为维度高的列创建索引,如性别和年龄,那年龄的维度就高于性别。

性别这样的列不适合创建索引,因为维度过低。

  • 对 where,on,group by,order by 中出现的列使用索引。
  • 对较小的数据列使用索引,这样会使索引文件更小,同时内存中也可以装载更多的索引键。
  • 为较长的字符串使用前缀索引。
  • 不要过多创建索引,除了增加额外的磁盘空间外,对于DML操作的速度影响很大,因为其每增删改一次就得从新建立索引。
  • 使用组合索引,可以减少文件索引大小,在使用时速度要优于多个单列索引。

4 组合索引与前缀索引

注意,这两种称呼是对建立索引技巧的一种称呼,并非索引的类型。

组合索引

MySQL单列索引和组合索引究竟有何区别呢?

为了形象地对比两者,先建一个表:

CREATE TABLE `myIndex` ( 
  `i_testID` INT NOT NULL AUTO_INCREMENT,  
  `vc_Name` VARCHAR(50) NOT NULL,  
  `vc_City` VARCHAR(50) NOT NULL,  
  `i_Age` INT NOT NULL,  
  `i_SchoolID` INT NOT NULL,  
  PRIMARY KEY (`i_testID`)  
);

假设表内已有1000条数据,在这 10000 条记录里面 7 上 8 下地分布了 5 条 vc_Name=”erquan” 的记录,只不过 city,age,school 的组合各不相同。来看这条 T-SQL:

SELECT `i_testID` FROM `myIndex` WHERE `vc_Name`='erquan' AND `vc_City`='郑州' AND `i_Age`=25; -- 关联搜索;

首先考虑建MySQL单列索引:

在 vc_Name 列上建立了索引。执行 T-SQL 时,MYSQL 很快将目标锁定在了 vc_Name=erquan 的 5 条记录上,取出来放到一中间结果集。在这个结果集里,先排除掉 vc_City 不等于”郑州”的记录,再排除 i_Age 不等于 25 的记录,最后筛选出唯一的符合条件的记录。虽然在 vc_Name 上建立了索引,查询时MYSQL不用扫描整张表,效率有所提高,但离我们的要求还有一定的距离。同样的,在 vc_City 和 i_Age 分别建立的MySQL单列索引的效率相似。

为了进一步榨取 MySQL 的效率,就要考虑建立组合索引。就是将 vc_Name,vc_City,i_Age 建到一个索引里:

ALTER TABLE `myIndex` ADD INDEX `name_city_age` (vc_Name(10),vc_City,i_Age);

建表时,vc_Name 长度为 50,这里为什么用 10 呢?这就是下文要说到的前缀索引,因为一般情况下名字的长度不会超过 10,这样会加速索引查询速度,还会减少索引文件的大小,提高 INSERT 的更新速度。

执行 T-SQL 时,MySQL 无须扫描任何记录就到找到唯一的记录!

如果分别在 vc_Name,vc_City,i_Age 上建立单列索引,让该表有 3 个单列索引,查询时和上述的组合索引效率一样吗?答案是大不一样,远远低于我们的组合索引。虽然此时有了三个索引,但 MySQL 只能用到其中的那个它认为似乎是最有效率的单列索引,另外两个是用不到的,也就是说还是一个全表扫描的过程。

建立这样的组合索引,其实是相当于分别建立了:

  • vc_Name,vc_City,i_Age
  • vc_Name,vc_City
  • vc_Name

这样的三个组合索引!为什么没有 vc_City,i_Age 等这样的组合索引呢?这是因为 mysql 组合索引 “最左前缀” 的结果。简单的理解就是只从最左面的开始组合。并不是只要包含这三列的查询都会用到该组合索引,下面的几个 T-SQL 会用到:

SELECT * FROM myIndex WHREE vc_Name=”erquan” AND vc_City=”郑州” SELECT * FROM myIndex WHREE vc_Name=”erquan”

而下面几个则不会用到:

SELECT * FROM myIndex WHREE i_Age=20 AND vc_City=”郑州” SELECT * FROM myIndex WHREE vc_City=”郑州”

也就是,name_city_age(vc_Name(10),vc_City,i_Age) 从左到右进行索引,如果没有左前索引Mysql不执行索引查询。

前缀索引

如果索引列长度过长,这种列索引时将会产生很大的索引文件,不便于操作,可以使用前缀索引方式进行索引前缀索引应该控制在一个合适的点,控制在0.31黄金值即可(大于这个值就可以创建)。

SELECT COUNT(DISTINCT(LEFT(`title`,10)))/COUNT(*) FROM Arctic; — 这个值大于0.31就可以创建前缀索引,Distinct去重复 ALTER TABLE `user` ADD INDEX `uname`(title(10)); — 增加前缀索引SQL,将人名的索引建立在10,这样可以减少索引文件大小,加快索引查询速度。

5 什么样的sql不走索引

要尽量避免这些不走索引的sql

SELECT `sname` FROM `stu` WHERE `age`+10=30;-- 不会使用索引,因为所有索引列参与了计算 

SELECT `sname` FROM `stu` WHERE LEFT(`date`,4) <1990; -- 不会使用索引,因为使用了函数运算,原理与上面相同 

SELECT * FROM `houdunwang` WHERE `uname` LIKE'后盾%' -- 走索引 

SELECT * FROM `houdunwang` WHERE `uname` LIKE "%后盾%" -- 不走索引 

-- 正则表达式不使用索引,这应该很好理解,所以为什么在SQL中很难看到regexp关键字的原因 

-- 字符串与数字比较不使用索引; 
CREATE TABLE `a` (`a` char(10)); 
EXPLAIN SELECT * FROM `a` WHERE `a`="1" -- 走索引 
EXPLAIN SELECT * FROM `a` WHERE `a`=1 -- 不走索引 

select * from dept where dname='xxx' or loc='xx' or deptno=45 --如果条件中有or,即使其中有条件带索引也不会使用。换言之,就是要求使用的所有字段,都必须建立索引,我们建议大家尽量避免使用or 关键字 

-- 如果mysql估计使用全表扫描要比使用索引快,则不使用索引

多表关联时的索引效率

SELECT `sname` FROM `stu` WHERE LEFT(`date`,4) <1990; — 不会使用索引,因为使用了函数运算,原理与上面相同
SELECT * FROM `houdunwang` WHERE `uname` LIKE’后盾%’ — 走索引
SELECT * FROM `houdunwang` WHERE `uname` LIKE “%后盾%” — 不走索引

Mysql索引优化

从上图可以看出,所有表的type为all,表示全表索引。也就是6 6 6,共遍历查询了216次。

除第一张表示全表索引(必须的,要以此关联其他表),其余的为range(索引区间获得),也就是6+1+1+1,共遍历查询9次即可。

所以我们建议在多表join的时候尽量少join几张表,因为一不小心就是一个笛卡尔乘积的恐怖扫描,另外,我们还建议尽量使用left join,以少关联多。因为使用join 的话,第一张表是必须的全扫描的,以少关联多就可以减少这个扫描次数。

6 索引的弊端

不要盲目的创建索引,只为查询操作频繁的列创建索引,创建索引会使查询操作变得更加快速,但是会降低增加、删除、更新操作的速度,因为执行这些操作的同时会对索引文件进行重新排序或更新。

但是,在互联网应用中,查询的语句远远大于DML的语句,甚至可以占到80%~90%,所以也不要太在意,只是在大数据导入时,可以先删除索引,再批量插入数据,最后再添加索引。

以上内容希望帮助到大家, 很多PHPer在进阶的时候总会遇到一些问题和瓶颈,业务代码写多了没有方向感,不知道该从那里入手去提升,对此我整理了一些资料,包括但不限于:分布式架构、高可扩展、高性能、高并发、服务器性能调优、TP6,laravel,Redis,Swoole、Swoft、Kafka、Mysql优化、shell脚本、Docker、微服务、Nginx等多个知识点高级进阶干货需要的可以免费分享给大家 ,需要戳这里 PHP进阶架构师>>>实战视频、大厂面试文档免费获取

点赞
收藏
评论区
推荐文章
blmius blmius
3年前
MySQL:[Err] 1292 - Incorrect datetime value: ‘0000-00-00 00:00:00‘ for column ‘CREATE_TIME‘ at row 1
文章目录问题用navicat导入数据时,报错:原因这是因为当前的MySQL不支持datetime为0的情况。解决修改sql\mode:sql\mode:SQLMode定义了MySQL应支持的SQL语法、数据校验等,这样可以更容易地在不同的环境中使用MySQL。全局s
添砖java的啾 添砖java的啾
3年前
distinct效率更高还是group by效率更高?
目录00结论01distinct的使用02groupby的使用03distinct和groupby原理04推荐groupby的原因00结论先说大致的结论(完整结论在文末):在语义相同,有索引的情况下groupby和distinct都能使用索引,效率相同。在语义相同,无索引的情况下:distinct效率高于groupby。原因是di
皕杰报表之UUID
​在我们用皕杰报表工具设计填报报表时,如何在新增行里自动增加id呢?能新增整数排序id吗?目前可以在新增行里自动增加id,但只能用uuid函数增加UUID编码,不能新增整数排序id。uuid函数说明:获取一个UUID,可以在填报表中用来创建数据ID语法:uuid()或uuid(sep)参数说明:sep布尔值,生成的uuid中是否包含分隔符'',缺省为
待兔 待兔
6个月前
手写Java HashMap源码
HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程22
Wesley13 Wesley13
3年前
MySQL千万级别优化·中
MySQL千万级别的查询优化手段·中单列索引(假设在v\_record表中存在id列的索引)1、WHERE条件使用​EXPLAINSELECT\FROMv\_recordWHEREid2​结论:利用索引进行回表查询2、SELECT字段使用
Wesley13 Wesley13
3年前
MySQL索引类型
一、简介MySQL目前主要有以下几种索引类型:1.普通索引2.唯一索引3.主键索引4.组合索引5.全文索引二、语句CREATETABLEtable_namecol_namedatatypeunique|fulltextindex|keyindex_name(c
Wesley13 Wesley13
3年前
mysql设置时区
mysql设置时区mysql\_query("SETtime\_zone'8:00'")ordie('时区设置失败,请联系管理员!');中国在东8区所以加8方法二:selectcount(user\_id)asdevice,CONVERT\_TZ(FROM\_UNIXTIME(reg\_time),'08:00','0
Wesley13 Wesley13
3年前
mysql5.6 分页查询优化
mysql5.6分页查询优化场景:表结构:主键(非自增)contentCode(varchar),过滤条件列为updateTime(timeStamp),已经为timestamp建立索引。搜索sql为:SELECTFROMmy_hello_tableWHEREupdat
Stella981 Stella981
3年前
ELK学习笔记之ElasticSearch的索引详解
0x00ElasticSearch的索引和MySQL的索引方式对比Elasticsearch是通过Lucene的倒排索引技术实现比关系型数据库更快的过滤。特别是它对多条件的过滤支持非常好,比如年龄在18和30之间,性别为女性这样的组合查询。倒排索引很多地方都有介绍,但是其比关系型
为什么mysql不推荐使用雪花ID作为主键
作者:毛辰飞背景在mysql中设计表的时候,mysql官方推荐不要使用uuid或者不连续不重复的雪花id(long形且唯一),而是推荐连续自增的主键id,官方的推荐是auto_increment,那么为什么不建议采用uuid,使用uuid究