大数据建模、分析、挖掘技术应用

helloworld_91538976
• 阅读 627

1.掌握大数据建模分析与使用方法。

2.掌握大数据平台技术架构。

3.掌握国内外主流的大数据分析与 BI 商业智能分析解决方案。

4.掌握大数据分析在搜索引擎、广告服务推荐、电商数据分析、金融客户分析方面的应用。

5.掌握主流的基于大数据 Hadoop 和 Spark、R 的大数据分析平台架构和实际应用。

6.掌握基于 Hadoop 大数据平台的数据挖掘和数据仓库分布式系统平台应用,以及商业和开源的数据分析产品加上 Hadoop 平台形成大数据分析平台的应用剖析。 7.掌握常见的机器学习算法。三、培训专家 来自中国科学院计算技术研究所、清华大学、北京理工大学等科研机构和大学的高级专家,拥有丰富的科研 及工程技术经验,长期从事机器学习、数据挖掘、大数据分析等领域的教学与研究工作。 四、参会对象:

各省市、自治区从事大数据分析、数据挖掘、数据处理、数据建模等领域相关的企事业单位技术骨干、科研 院所研究人员和大专院校相关专业教学人员及在校研究生等相关人员,以及大数据研究广大爱好者。 五、费用标准:

5680 元/人(含报名费、培训费、资料费、证书费)。食宿可统一安排,费用自理。

1、培训费由组织培训班的施教机构负责收取并提供培训发票。

2、上课前一周汇款可享受 9 折优惠,或报名 5 人以上可享受 9 折优惠,两个优惠不同时享用。

3、参加线上、线下培训学员均可享受视频录播回放权益

点赞
收藏
评论区
推荐文章
Irene181 Irene181
3年前
用户画像有什么用?怎样用?6个场景案例给你讲明白
导读:企业的精细化运营、数据驱动都是基于大数据分析来进行的。在大数据分析中,对用户行为进行分析挖掘又是一个重要的方向,通过对用户行为进行分析,企业可以了解用户从哪里来,进入平台后进行了哪些操作,什么情况下进行了下单付款,用户的留存、分布情况是怎样的等。在这些数据的指导下可以不断优化产品设计、运营模式从而促进转化率的提高和营收的增长。基于用户行为分
Aidan075 Aidan075
3年前
分享5个高效的pandas函数!
熟练掌握pandas函数都能帮我们在数据分析过程中节省时间。pandas还有很多让人舒适的用法,这次就为大家介绍5个pandas函数!本文来源towardsdatascience,作者SonerYıldırım,由Python大数据分析编译。1\.explodeexplode用于将一行数据展开成多行。比如说dataframe中某一行其中一个元素包含多个同
Stella981 Stella981
3年前
Flink on YARN部署快速入门指南
Apache Flink是一个高效、分布式、基于Java和Scala(主要是由Java实现)实现的通用大数据分析引擎,它具有分布式MapReduce一类平台的高效性、灵活性和扩展性以及并行数据库查询优化方案,它支持批量和基于流的数据分析,且提供了基于Java和Scala的API。  从Flink官方文档可以知道,目前Flink支持三大部署模式:Loca
Stella981 Stella981
3年前
LR.JAVA平台商业可视化大屏(BI)设计演示
关于BI商业智能(BusinessIntelligence,简称:BI),又称商业智慧或商务智能,指用现代数据仓库技术、线上分析处理技术、数据挖掘和数据展现技术进行数据分析以实现商业价值。商业智能的概念在1996年最早由加特纳集团(GartnerGroup)提出,加特纳集团将商业智能定义为:商业智能描述了一系列的概念和方法,通过应用基于事
Stella981 Stella981
3年前
Hadoop是一种开源的适合大数据的分布式存储和处理的平台
“Hadoop能做什么?”,概括如下:  1)搜索引擎:这也正是DougCutting设计Hadoop的初衷,为了针对大规模的网页快速建立索引;  2)大数据存储:利用Hadoop的分布式存储能力,例如数据备份、数据仓库等;  3)大数据处理:利用Hadoop的分布式处理能力,例如数据挖掘、数据分析等;  4)
Wesley13 Wesley13
3年前
B 站疯传,堪称最强,一整套数据分析课程,学完月薪30K+!
2020魔幻之年,疫情下就业大受影响,很多岗位缩招,而数据分析相关工作岗位恋习Python(如数据分析师、数据挖掘师等岗位)却在增加。非专业数据分析岗位(如运营、市场、销售等岗位)也要求“数据分析”能力。大数据时代的未来,数据分析将是每个岗位的必备技能。!(https://oscimg.oschina.net/oscn
大数据建模、分析、挖掘技术应用
时间2022年8月5日—2022年8月9日北京(同时转线上直播)(5日报到,6日9日上课)课程第一天一、大数据概述二、大数据处理架构Hadoop三、分布式文件系统HDFS四、分布式数据库HBase第二天五、MapReduce六、Spark七、IPythonNotebook运行PythonSpark程序八、PythonSpark集成开发环境第三
面向大规模分析的多源对地观测时空立方体
随着对地立体观测体系的建立,遥感大数据不断累积。传统基于文件、景/幅式的影像组织方式,时空基准不够统一,集中式存储不利于大规模并行分析。对地观测大数据分析仍缺乏一套统一的数据模型与基础设施理论。近年来,数据立方体的研究为对地观测领域大数据分析基础设施提供了前景。基于统一的分析就绪型多维数据模型和集成对地观测数据分析功能,可构建一个基于数据立方的对地观测大数据
大数据丨独家内部教材,让你掌握前沿技术算法
大数据处理关键技术一般包括:大数据采集、大数据预处理、大数据存储及管理、大数据分析及挖掘、大数据展现和应用(大数据检索、大数据可视化、大数据应用大数据安全等)。大数据采集技术:数据是指通过REID射频数据、传威器数据、社交网络交互数据及移动互联
GPT-4助力数据分析:提升效率与洞察力的未来关键技术 | 京东云技术团队
ChatGPT4作为一种先进的自然语言处理技术,为数据分析带来了革命性的提升,助力企业和组织更高效地挖掘数据价值。本文将探讨ChatGPT4在数据分析中的应用,以及如何通过该技术提高数据分析的效率和洞察力。
helloworld_91538976
helloworld_91538976
Lv1
伤见路旁杨柳春,一重折尽一重新。今年还折去年处,不送去年离别人。
文章
12
粉丝
0
获赞
0