浅谈LocalCache | 京东云技术团队

京东云开发者
• 阅读 314

1、什么是LocalCache?

本地缓存是一种将数据存储在应用程序内存中的机制,用于提高数据访问的性能和响应速度。它通过在内存中维护一个键值对的存储结构,允许应用程序快速检索和访问数据,而无需每次都从慢速的数据源(如数据库或网络)获取数据。

2、LocalCache优缺点

1)优点

•快速访问:LocalCache将数据存储在内存中,因此可以快速访问缓存数据,提高应用程序的性能。

•减轻后端负载:通过将经常访问的数据存储在本地缓存中,可以减少对后端数据源的访问次数,降低后端负载,提高系统的整体性能。

•灵活性:LocalCache提供了一些配置选项,如最大容量、过期时间等,可以根据需求进行调整。这使得开发人员能够灵活地控制缓存的行为,以适应不同的业务场景。

2)缺点

•有限的容量:由于LocalCache是基于内存的,因此容量是有限的。如果缓存数据量过大,可能会导致内存消耗过高,影响系统的稳定性。

•单点故障:LocalCache存储在单个应用程序中,如果应用程序崩溃或重启,缓存数据将丢失。这可能会导致缓存冷启动和性能下降。

3、LocalCache应用场景

LocalCache适用于许多不同的使用场景,特别是以下几种情况:

1.频繁访问的数据:如果应用程序中有一些频繁被访问的数据,将这些数据存储在LocalCache中可以大大提高访问速度。由于数据存储在内存中,相比于从磁盘或网络中读取数据,从本地缓存中获取数据的速度更快。

2.减轻后端负载:通过将经常访问的数据存储在本地缓存中,可以减少对后端数据源(如数据库或API)的访问次数。这样可以降低后端的负载,提高系统的整体性能。

3.降低网络延迟:在分布式系统或微服务架构中,不同的服务可能位于不同的节点上,通过网络进行通信。使用本地缓存可以减少对远程服务的调用次数,从而减少网络延迟,提高系统的响应速度。

4.灵活性和可配置性:LocalCache提供了一些配置选项,如最大容量、过期时间等,可以根据需求进行调整。这使得开发人员能够灵活地控制缓存的行为,以适应不同的业务场景。

4、LocalCache实际使用场景

1.数据库中间件:数据库中间件是位于应用程序和后端数据库之间的软件层,常见的数据库中间件包括MySQL Proxy、Cobar、MyCat等。这些中间件可以使用LocalCache来缓存查询结果,以减轻后端数据库的负载并提高查询性能。当应用程序发出相同的查询请求时,中间件可以先检查LocalCache中是否有相应的缓存结果,如果有则直接返回缓存结果,否则再向后端数据库发起查询请求。

2.消息队列:消息队列是一种用于异步通信的中间件,常见的消息队列系统包括Apache Kafka、RabbitMQ等。在消息队列系统中,LocalCache可以用来缓存消息,以提高消息的处理速度和响应能力。当消费者需要处理消息时,它可以先在LocalCache中查找是否有相应的消息缓存,如果有则直接消费缓存消息,否则再从消息队列中获取消息。

3.前端应用:前端应用包括各种Web应用、移动应用和桌面应用,常见的前端框架如React、Angular、Vue.js等。在前端应用中,LocalCache可以用于缓存静态资源(如JavaScript、CSS、图像等)或动态数据,以提高应用的加载速度和用户体验。例如,前端应用可以先检查LocalCache中是否有相应的资源缓存,如果有则直接使用缓存资源,否则再从服务器获取资源并将其缓存到LocalCache中。

4.服务端应用:服务端应用包括各种后端服务、微服务和RESTful API等,常见的服务端框架如Spring、Node.js、Ruby on Rails等。LocalCache可以在服务端应用中使用,用于缓存计算结果、数据库查询结果等,以提高性能和减少对外部资源的依赖。例如,当服务端应用需要进行频繁的计算或查询时,它可以先检查LocalCache中是否有相应的缓存结果,如果有则直接返回缓存结果,否则再进行计算或查询,并将结果缓存到LocalCache中。

5.开源框架:许多开源框架提供了自己的LocalCache实现,以方便开发人员在应用中使用。这些框架通常提供了丰富的配置选项和高性能的缓存实现,可以根据应用需求进行定制。例如,Guava、Caffeine和Ehcache等是常见的Java开源框架,它们提供了LocalCache的实现,可以用于缓存计算结果、数据库查询结果等。

5、LocalCache在Guava实践

Guava cache 继承了 ConcurrentHashMap 的思路,使用多个 segments 方式的细粒度锁,在保证线程安全的同时,支持高并发场景需求。

1、CacheBuilder 缓存构建器。构建缓存的入口,指定缓存配置参数并初始化本地缓存。采用 Builder 设计模式提供了设置好各种参数的缓存对象。

CacheBuilder<Object,Object> cacheBuilder =CacheBuilder.newBuilder();

2、LocalCache 数据结构。缓存核心类 LocalCache 数据结构与 ConcurrentHashMap 很相似,由多个 segment 组成,且各 segment 相对独立,互不影响,所以能支持并行操作,每个 segment 由一个 table 和若干队列组成。缓存数据存储在 table 中,其类型为AtomicReferenceArray,具体结构图及代码解释如下。

浅谈LocalCache | 京东云技术团队

#Guava中LocalCache声明segments变量
final LocalCache.Segment<K, V>[] segments;

#Guava中初始化segments
this.segments = this.newSegmentArray(segmentCount);
final LocalCache.Segment<K, V>[] newSegmentArray(int ssize) {
    return new LocalCache.Segment[ssize];
}
#获取Segment
Segment<K, V> segmentFor(int hash) {
    return segments[(hash >>> segmentShift) & segmentMask];
}

#Guava中Segment声明table变量用于存储数据
volatile AtomicReferenceArray<LocalCache.ReferenceEntry<K, V>> table;

V put(K key, int hash, V value, boolean onlyIfAbsent) {
    #保证线程安全
    lock(); 
    #获取数据
    AtomicReferenceArray<ReferenceEntry<K, V>> table = this.table;
    int index = hash & (table.length() - 1);
    ReferenceEntry<K, V> first = table.get(index);
    for (ReferenceEntry<K, V> e = first; e != null; e = e.getNext()) {
      if (e.getHash() == hash
      && entryKey != null
      && map.keyEquivalence.equivalent(key, entryKey)) {
      }
    }
}

3、在Guava中,CacheBuilder提供了一系列方法,用于指定缓存的大小、过期策略、并发级别等属性。

1.配置缓存属性:通过一系列方法来配置缓存的属性,例如:

maximumSize(long size):指定缓存的最大容量,当缓存达到最大容量时,根据缓存策略淘汰部分缓存项。

expireAfterWrite(Duration duration):指定缓存项的写入后过期时间,过期后的缓存项将被自动移除。

expireAfterAccess(Duration duration):指定缓存项的最后一次访问后过期时间,过期后的缓存项将被自动移除。

concurrencyLevel(int level):指定并发级别,即同时可以进行缓存操作的线程数。

Cache<Object,Object> cache = cacheBuilder.maximumSize(1000)
                                        .expireAfterWrite(Duration.ofMinutes(10))
                                        .concurrencyLevel(4)
                                        .build();

2. 使用缓存:通过Cache对象的方法来进行缓存的读取、写入和移除操作。例如:

get(Object key):根据键获取缓存项的值。

浅谈LocalCache | 京东云技术团队

put(Object key, Object value):向缓存中添加或更新一个缓存项。

浅谈LocalCache | 京东云技术团队

invalidate(Object key):移除指定键的缓存项。

浅谈LocalCache | 京东云技术团队

3. 其他功能:Guava的LocalCache还提供了其他功能,如统计信息、监听器、加载器等,用于监控缓存的状态、处理缓存未命中的情况等。

CacheStats stats = cache.stats();
cache.asMap().forEach((key, value)->System.out.println(key +": "+ value));
cache.cleanUp();

总结来说,Guava的LocalCache使用CacheBuilder构建和配置缓存,通过Cache对象进行缓存的读取、写入和移除操作。开发人员可以根据自己的需求使用相应的方法和功能来定制和管理缓存。

6、后记

设计一个可用的 Cache 绝对不是一个普通的 Map 这么简单,这里小结一下关于 Guava Cache 的知识。

回归LocalCache 的源头,我是希望可以了解 设计一个缓存要考虑什么?局部性原理 是一个系统性能提升的最直接的方式(编程上,硬件上当然也可以),缓存的出现就是根据 局部性原理 所设计的。

浅谈LocalCache | 京东云技术团队

缓存作为存储金字塔的一部分,一定需要考虑以下几个问题:

1.何时加载

在设计何时加载的问题上,Guava Cache 提供了一个 Loader 接口,让用户可以自定义加载过程,在由 Cache 在找不到对象的时候主动调用 Loader 去加载,还通过一个巧妙的方法,既保证了 Loader 的只运行一次,还能保证锁粒度极小,保证并发加载时,安全且高性能。

2. 何时失效

失效处理上,Guava Cache 提供了基于容量、有限时间(读有限时、写有限时)等失效策略,在官方文档上也写明,在基于限时的情况下,并不是使用一个线程去单独清理过期 K-V,而是把这个清理工作,均摊到每次访问中。假如需要定时清理,也可以调用 CleanUp 方法,定时调用就可以了。

3. 如何保持热点数据有效性

在 Cache 容量有限时, LRU 算法是一个通用的解决方案,在源码中,Guava Cache 并不是严格地保证全局 LRU 的,只是针对一个 Segment 实现 LRU 算法。这个前提是 Segment 对用户来说是随机的,所以全局的 LRU 算法和单个 Segment 的算法是基本一致的。

4. 写回策略

在 Guava Cache 里,并没有实现任何的写回策略。原因在于,Guava Cache 是一个本地缓存,直接修改对象的数据,Cache 的数据就已经是最新的了,所以在数据能够写入 DB 后,数据就已经完成一致了。

参考文献:Google Guava Cache 全解析

作者:京东科技 游斌平

来源:京东云开发者社区 转载请注明来源

点赞
收藏
评论区
推荐文章
Wesley13 Wesley13
3年前
java memcached client
Memcach什么是MemcacheMemcache集群环境下缓存解决方案Memcache是一个高性能的分布式的内存对象缓存系统,通过在内存里维护一个统一的巨大的hash表,它能够用来存储各种格式的数据,包括图像、视频、文件以及数据库检索的结果等。简单的说就是将数据调用到内存中,然后从内存中读取,从而大大提高读取速度。Memcache是d
Stella981 Stella981
3年前
SpringBoot,用200行代码完成一个一二级分布式缓存
   缓存系统的用来代替直接访问数据库,用来提升系统性能,减小数据库复杂。早期缓存跟系统在一个虚拟机里,这样内存访问,速度最快。后来应用系统水平扩展,缓存作为一个独立系统存在,如redis,但是每次从缓存获取数据,都还是要通过网络访问才能获取,效率相对于早先从内存里获取,还是差了点。如果一个应用,比如传统的企业应用,一次页面显示,要访问数次redis,
Wesley13 Wesley13
3年前
FLV文件格式
1.        FLV文件对齐方式FLV文件以大端对齐方式存放多字节整型。如存放数字无符号16位的数字300(0x012C),那么在FLV文件中存放的顺序是:|0x01|0x2C|。如果是无符号32位数字300(0x0000012C),那么在FLV文件中的存放顺序是:|0x00|0x00|0x00|0x01|0x2C。2.  
Stella981 Stella981
3年前
Hibernate 缓存机制
一、为什么要用Hibernate缓存Hibernate是一个持久层框架,经常访问物理数据库。为了降低应用程序对物理数据源访问的频次,从而提高应用程序的运行性能。缓存内的数据是对物理数据源中的数据的复制,应用程序在运行时从缓存读写数据,在特定的时刻或事件会同步缓存和物理数据源的数据。二、Hibernate
Stella981 Stella981
3年前
MemCache 入门极简教程
MemCache概述MemCache虽然被称为”分布式缓存”,但是MemCache本身完全不具备分布式的功能Memcache是一个高性能的分布式内存对象缓存系统,用于动态Web应用以减轻数据库负载。它通过在内存中缓存数据和对象来减少读取数据库的次数,从而提高了网站访问的速度。MemCaChe是一个存储键值对的Hash
Stella981 Stella981
3年前
Python操作 RabbitMQ、Redis、Memcache、SQLAlchemy
MemcachedMemcached是一个高性能的分布式内存对象缓存系统,用于动态Web应用以减轻数据库负载。它通过在内存中缓存数据和对象来减少读取数据库的次数,从而提高动态、数据库驱动网站的速度。Memcached基于一个存储键/值对的hashmap(https://www.oschina.net/action/GoToLin
Stella981 Stella981
3年前
Linux应急响应(二):捕捉短连接
0x00前言​短连接(shortconnnection)是相对于长连接而言的概念,指的是在数据传送过程中,只在需要发送数据时,才去建立一个连接,数据发送完成后,则断开此连接,即每次连接只完成一项业务的发送。在系统维护中,一般很难去察觉,需要借助网络安全设备或者抓包分析,才能够去发现。0x01应急场景​
Stella981 Stella981
3年前
Memcached 介绍 协议 结构 分布式 一致性
Memcached简介:    Memcached是一款开源、高性能、分布式内存对象缓存系统,可应用各种需要缓存的场景,其主要目的是通过降低对Database的访问来加速web应用程序。它是一个基于内存的“键值对”存储,用于存储数据库调用、API调用或页面引用结果的直接数据,如字符串、对象等。    Memcached是以LiveJour