1分钟了解相似性推荐

Wesley13
• 阅读 794

前几天聊的“协同过滤(Collaborative Filtering)”和“基于内容的推荐(Content-based Recommendation)”,都必须分析用户的历史行为数据(例如电影点击数据,职位查看数据等),针对不同的用户进行个性化推荐。如果系统没有用户的历史行为数据积累,如何实施推荐呢?

今天接着用通俗的语言说说推荐算法中的“相似性推荐”。

什么是“相似性推荐”?

:对于新用户A,没有ta的历史行为数据,在ta点击了item-X的场景下,可以将与item-X最相似的item集合推荐给新用户A。

问题转化为,如何用一种通用的方法,表达item之间的相似性。

仍以电影推荐为例,新用户A进入了《我不是潘金莲》电影详情页,如何对A进行电影推荐呢?

先看二维空间的点N,如何推荐与其最近的点?

:可以用二维空间中,点与点之间的距离,表示点之间的远近。

对于全集中的任何一个点M(xi, yi),它与点N(x1, y1)的距离:

distance = (x1-xi)^2 + (y1-yi)^2

所以,只要计算全集中所有点与N的距离,就能计算出与它最近的3个点。

再看三维空间的点N,如何推荐与其最近的点?

:可以用三维空间中,点与点之间的距离,表示点之间的远近。

对于全集中的任何一个点M(xi, yi, zi),它与点N(x1, y1, z1)的距离:

distance = (x1-xi)^2 + (y1-yi)^2 + (z1-zi)^2

所以,只要计算全集中所有点与N的距离,就能计算出与它最近的3个点。

循序渐进,对于一部电影《我不是潘金莲》,假设它有10个属性,则可以把它看做一个十维空间中的点:

点N《我不是潘金莲》

{

导演:冯小刚

女主:范冰冰

男主:郭涛

女配:张嘉译

男配:大鹏

类型:剧情

地区:中国大陆

语言:普通话

日期:2016

片长:140

}

对于电影全集中的任何一部电影,都可以计算与点N《我不是潘金莲》之间的距离。二维三维中的点,可以用直线距离计算远近,10维空间{导演, 女主, 男主, 女配, 男配, 类型, 地区, 语言, 日期, 片长}中的两个点的距离,需要重新定义一个距离函数,例如:

distance = f1(导演) + f2(女主) + … +f10(片长)

这个距离,通俗的解释,就是每个维度贡献分值的总和。

分值可以这么定义:

f1(导演){

如果两部电影导演相同,得1分;

如果导演不同,得0分;

}

例如,现在10维空间中,有另一个点M《芳华》

{

导演:冯小刚

女主:苗苗

男主:黄轩

女配:NULL

男配:NULL

类型:剧情

地区:中国大陆

语言:普通话

日期:2017

片长:140

}

要计算点M《芳华》与点N《我不是潘金莲》的距离,代入distance距离计算公式:

distance = f1(导演) + f2(女主) + … +f10(片长)

=1 + 0 + … + 1

=5

即:导演、类型、地区、语言、片长相同各得1分,其他维度不同得0分。

遍历电影全集中的10w部电影,就能找到与点N《我不是潘金莲》最相近的3部电影,当用户点击《我不是潘金莲》的详情页时,直接推荐这3部最相近的电影即可。

相似性推荐,原理大致如上,要说明的是:

  • 由于没有用户历史行为积累,不是个性化推荐,所以所有用户的推荐结果都是相同的

  • 一般来说,距离公式确实是线性的

  • 一般来说,每个维度的权重不一样

  • 这个线性公式,以及维度的权重,都可以通过机器学习训练出来

相似性推荐,希望这1分钟,大家能有收获。

人肉推荐:

1分钟了解协同过滤,pm都懂了

1分钟了解基于内容的推荐,pm又懂了

本文分享自微信公众号 - 架构师之路(road5858)。
如有侵权,请联系 support@oschina.cn 删除。
本文参与“OSC源创计划”,欢迎正在阅读的你也加入,一起分享。

点赞
收藏
评论区
推荐文章
blmius blmius
3年前
MySQL:[Err] 1292 - Incorrect datetime value: ‘0000-00-00 00:00:00‘ for column ‘CREATE_TIME‘ at row 1
文章目录问题用navicat导入数据时,报错:原因这是因为当前的MySQL不支持datetime为0的情况。解决修改sql\mode:sql\mode:SQLMode定义了MySQL应支持的SQL语法、数据校验等,这样可以更容易地在不同的环境中使用MySQL。全局s
皕杰报表之UUID
​在我们用皕杰报表工具设计填报报表时,如何在新增行里自动增加id呢?能新增整数排序id吗?目前可以在新增行里自动增加id,但只能用uuid函数增加UUID编码,不能新增整数排序id。uuid函数说明:获取一个UUID,可以在填报表中用来创建数据ID语法:uuid()或uuid(sep)参数说明:sep布尔值,生成的uuid中是否包含分隔符'',缺省为
待兔 待兔
4个月前
手写Java HashMap源码
HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程22
Stella981 Stella981
3年前
Docker 部署SpringBoot项目不香吗?
  公众号改版后文章乱序推荐,希望你可以点击上方“Java进阶架构师”,点击右上角,将我们设为★“星标”!这样才不会错过每日进阶架构文章呀。  !(http://dingyue.ws.126.net/2020/0920/b00fbfc7j00qgy5xy002kd200qo00hsg00it00cj.jpg)  2
Stella981 Stella981
3年前
Apache Mahout中推荐算法Slope one源码分析
关于推荐引擎如今的互联网中,无论是电子商务还是社交网络,对数据挖掘的需求都越来越大了,而推荐引擎正是数据挖掘完美体现;通过分析用户历史行为,将他可能喜欢内容推送给他,能产生相当好的用户体验,这就是推荐引擎。推荐算法Slopeone的原理      首先Slopeone是一种基于项目的协同过
Wesley13 Wesley13
3年前
User
1基于用户的协同过滤算法:基于用户的协同过滤算法是推荐系统中最古老的的算法,可以说是这个算法的诞生标志了推荐系统的诞生。该算法在1992年被提出,并应用于邮件过滤系统,1994年被GroupLens用于新闻过滤。在一个在线个性化推荐系统中,当一个用户A需要个性化推荐时,可以先找到和他有相似兴趣的其他用户,然后把那些用户喜欢的而用户A没有接触过的物品推
为什么mysql不推荐使用雪花ID作为主键
作者:毛辰飞背景在mysql中设计表的时候,mysql官方推荐不要使用uuid或者不连续不重复的雪花id(long形且唯一),而是推荐连续自增的主键id,官方的推荐是auto_increment,那么为什么不建议采用uuid,使用uuid究