Apache Mahout中推荐算法Slope one源码分析

Stella981
• 阅读 710

关于推荐引擎

如今的互联网中,无论是电子商务还是社交网络,对数据挖掘的需求都越来越大了,而推荐引擎正是数据挖掘完美体现;通过分析用户历史行为,将他可能喜欢内容推送给他,能产生相当好的用户体验,这就是推荐引擎。

推荐算法Slope one的原理

        首先Slope one是一种基于项目的协同过滤算法(Item-based Recommendation),简单介绍这种算法(若理解有误,欢迎大家更正,I am just a beginnerApache Mahout中推荐算法Slope one源码分析 ):根据用户们对产品的喜好程度,来将产品分类;举个简单例子:比如有10个用户,其中有9个人即喜欢产品A,也喜欢产品B,但只有2个人喜欢产品C;于是可以推断产品A和产品B是属于同类的,而产品C可能跟它们不是一类。

好了话不多讲,让我们看看Slope one吧!

Slope one是通过用户们对每个产品的评分,来计算产品间的一个差值;这种计算是通过 线性回归

f(x) = a__x + _b_到的,其中a = 1,正如它的名字Slope one(斜率为一);另外用户的评分,在Slope one中

是必不可少的。这里举例看看它的计算方式:下面是一张用户对书籍的评分表

书 1

书 2

书 3

用户A

5

3

2

用户B

3

4

未评分

用户C

未评分

2

5

        

        书1是否适合推荐给用户C,需要通过Slope one 计算出一个值来判定:首先得到书1和书2之间的平均差值X = ((5-3)+(3-4))/ 2 = 0.5,然后通过用户C对书2的打分得到相应的推荐值 2+0.5 = 2.5 (推荐引擎会通过推荐值的高低来选择要推荐的物品),这里只是通过书2来计算用户C对书1的推荐值,实际的Slope one算法中若要得到用户C对书1的推荐值,会把用户C评分过的所有书按此方法依次对书1(为评分的书)算推荐值,然后取平均值得到,放到表中如下:

(((5-3)+(3-4))/ 2 +2 + (5 - 2)/ 1 + 5 )/ 2 = 5.25

实际应用中你还可以设权值,这里就不深入了。

以上是Slope one的原理,接下来看看它在Mahout中是如何设计与实现的。

Mahout中Slope one的设计思路以及代码实现

        先简单介绍下,Mahout是Apache的一个开源项目,由Lucene项目组和Hadoop项目组分离出来,它实现了推荐引擎中的大部分经典算法,有兴趣的朋友可以研究研究

首先我们需要基础数据,即用户对产品的评分,这部分数据可以来自数据库也可以来自文件,Mahout中对此设计了一个简单的数据库表,SQL如下:

CREATE TABLE taste_preferences (
    user_id BIGINT NOT NULL,
    item_id BIGINT NOT NULL,
    preference FLOAT NOT NULL,
    PRIMARY KEY (user_id, item_id),
    INDEX (user_id),
    INDEX (item_id)
)

其次,Mahout在启动时,会对这部分数据进行处理,算出每对产品间的平均评分差值,已Map<ItemId, Map<ItemId, Average>>的数据结构存放在内存中(当然这帮牛人没有用Java中Map的实现,自己写了一个叫FastByIDMap的类)。处理基础数据的计算代码如下:

  1. 首先获取所有评过分的用户id (7,而dataModel就是用于存放我上面提到的基础)

  2. 然后依次计算每个用户评分过的产品间的平均评分差值 (9,具体在processOneUser中实现)

    private void buildAverageDiffs() throws TasteException { log.info("Building average diffs..."); try { buildAverageDiffsLock.writeLock().lock(); averageDiffs.clear(); long averageCount = 0L; LongPrimitiveIterator it = dataModel.getUserIDs(); while (it.hasNext()) { averageCount = processOneUser(averageCount, it.nextLong()); }
    pruneInconsequentialDiffs(); updateAllRecommendableItems();
    } finally { buildAverageDiffsLock.writeLock().unlock(); } }

  3. 首先取出该用户所有评分过的项目和评分值(4)

  4. 依次计算这些项目间的平均评分差值(6 ~ 26),并存储在内存中。

    private long processOneUser(long averageCount, long userID) throws TasteException { log.debug("Processing prefs for user {}", userID); // Save off prefs for the life of this loop iteration PreferenceArray userPreferences = dataModel.getPreferencesFromUser(userID); int length = userPreferences.length(); for (int i = 0; i < length - 1; i++) { float prefAValue = userPreferences.getValue(i); long itemIDA = userPreferences.getItemID(i); FastByIDMap aMap = averageDiffs.get(itemIDA); if (aMap == null) { aMap = new FastByIDMap(); averageDiffs.put(itemIDA, aMap); } for (int j = i + 1; j < length; j++) { // This is a performance-critical block long itemIDB = userPreferences.getItemID(j); RunningAverage average = aMap.get(itemIDB); if (average == null && averageCount < maxEntries) { average = buildRunningAverage(); aMap.put(itemIDB, average); averageCount++; } if (average != null) { average.addDatum(userPreferences.getValue(j) - prefAValue); } } RunningAverage itemAverage = averageItemPref.get(itemIDA); if (itemAverage == null) { itemAverage = buildRunningAverage(); averageItemPref.put(itemIDA, itemAverage); } itemAverage.addDatum(prefAValue); } return averageCount; }

        以上是启动时做的事,而当某个用户来了,需要为他计算推荐列表时,就快速许多了(是一个空间换时间的思想),下面的方法是某一个用户对其某一个他未评分过的产品的推荐值,参数UserId:用户ID;ItemId:为评分的产品ID

  1. 再次取出该用户评分过的所有产品(4):PreferenceArray prefs中保存着ItemID和该用户对它的评分

2. 取得上一步得到的prefs中的所有物品与itemID代表的物品之间的平均评分差值(5),其中

DiffStorage diffStorage对象中存放中每对产品间的平均评分差值(而上面启动时的计算都是在

MySQLJDBCDiffStorage中实现的,计算后的值也存于其中,它是DiffStorage接口的实现),所以

取得的流程很简单,这里不贴代码了

3. 最后就是依次推算评分过的产品到未评分的产品的一个推荐值 = 平均评分差值(两者间的) + 已评分的分值(用

户对其中一个评分),然后将这些推荐值取个平均数(7 ~ 37),其中11行判断是否要考虑权重。

private float doEstimatePreference(long userID, long itemID) throws TasteException {
    double count = 0.0;
    double totalPreference = 0.0;
    PreferenceArray prefs = getDataModel().getPreferencesFromUser(userID);
    RunningAverage[] averages = diffStorage.getDiffs(userID, itemID, prefs);
    int size = prefs.length();
    for (int i = 0; i < size; i++) {
      RunningAverage averageDiff = averages[i];
      if (averageDiff != null) {
        double averageDiffValue = averageDiff.getAverage();
        if (weighted) {
          double weight = averageDiff.getCount();
          if (stdDevWeighted) {
            double stdev = ((RunningAverageAndStdDev) averageDiff).getStandardDeviation();
            if (!Double.isNaN(stdev)) {
              weight /= 1.0 + stdev;
            }
            // If stdev is NaN, then it is because count is 1. Because we're weighting by count,
            // the weight is already relatively low. We effectively assume stdev is 0.0 here and
            // that is reasonable enough. Otherwise, dividing by NaN would yield a weight of NaN
            // and disqualify this pref entirely
            // (Thanks Daemmon)
          }
          totalPreference += weight * (prefs.getValue(i) + averageDiffValue);
          count += weight;
        } else {
          totalPreference += prefs.getValue(i) + averageDiffValue;
          count += 1.0;
        }
      }
    }
    if (count <= 0.0) {
      RunningAverage itemAverage = diffStorage.getAverageItemPref(itemID);
      return itemAverage == null ? Float.NaN : (float) itemAverage.getAverage();
    } else {
      return (float) (totalPreference / count);
    }
  }

Slope one 的源码已分析完毕。

其实Slope one推荐算法很流行,被很多网站使用,包括一些大型网站;我个人认为最主要的原因是它具备如下优势:

  1. 实现简单并且易于维护。

  2. 响应即时(只要用户做出一次评分,它就能有效推荐,根据上面代码很容易理解),并且用户的新增评分对推荐数据的改变量较小,应为在内存中存储的是物品间的平均差值,新增的差值只需累加一下,且范围是用户评分过的产品。

  3. 由于是基于项目的协同过滤算法,适用于当下火热的电子商务网站,原因电子商务网站用户量在几十万到上百万,产品量相对于之则要小得多,所以对产品归类从性能上讲很高效。

分析至此,祝大家周末愉快。

参考资料:

1. Slope one http://zh.wikipedia.org/wiki/Slope_one

2. 探索推荐引擎内部的秘密,第 2 部分: 深入推荐引擎相关算法 - 协同过滤

http://www.ibm.com/developerworks/cn/web/1103_zhaoct_recommstudy2/index.html

3. Apache Mahout 源代码

       另:原创blog,转载请注明http://my.oschina.net/BreathL/blog/41063

点赞
收藏
评论区
推荐文章
blmius blmius
3年前
MySQL:[Err] 1292 - Incorrect datetime value: ‘0000-00-00 00:00:00‘ for column ‘CREATE_TIME‘ at row 1
文章目录问题用navicat导入数据时,报错:原因这是因为当前的MySQL不支持datetime为0的情况。解决修改sql\mode:sql\mode:SQLMode定义了MySQL应支持的SQL语法、数据校验等,这样可以更容易地在不同的环境中使用MySQL。全局s
皕杰报表之UUID
​在我们用皕杰报表工具设计填报报表时,如何在新增行里自动增加id呢?能新增整数排序id吗?目前可以在新增行里自动增加id,但只能用uuid函数增加UUID编码,不能新增整数排序id。uuid函数说明:获取一个UUID,可以在填报表中用来创建数据ID语法:uuid()或uuid(sep)参数说明:sep布尔值,生成的uuid中是否包含分隔符'',缺省为
待兔 待兔
5个月前
手写Java HashMap源码
HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程22
Jacquelyn38 Jacquelyn38
3年前
2020年前端实用代码段,为你的工作保驾护航
有空的时候,自己总结了几个代码段,在开发中也经常使用,谢谢。1、使用解构获取json数据let jsonData  id: 1,status: "OK",data: 'a', 'b';let  id, status, data: number   jsonData;console.log(id, status, number )
Stella981 Stella981
3年前
KVM调整cpu和内存
一.修改kvm虚拟机的配置1、virsheditcentos7找到“memory”和“vcpu”标签,将<namecentos7</name<uuid2220a6d1a36a4fbb8523e078b3dfe795</uuid
Easter79 Easter79
3年前
Twitter的分布式自增ID算法snowflake (Java版)
概述分布式系统中,有一些需要使用全局唯一ID的场景,这种时候为了防止ID冲突可以使用36位的UUID,但是UUID有一些缺点,首先他相对比较长,另外UUID一般是无序的。有些时候我们希望能使用一种简单一些的ID,并且希望ID能够按照时间有序生成。而twitter的snowflake解决了这种需求,最初Twitter把存储系统从MySQL迁移
Stella981 Stella981
3年前
Docker 部署SpringBoot项目不香吗?
  公众号改版后文章乱序推荐,希望你可以点击上方“Java进阶架构师”,点击右上角,将我们设为★“星标”!这样才不会错过每日进阶架构文章呀。  !(http://dingyue.ws.126.net/2020/0920/b00fbfc7j00qgy5xy002kd200qo00hsg00it00cj.jpg)  2
Wesley13 Wesley13
3年前
MySQL部分从库上面因为大量的临时表tmp_table造成慢查询
背景描述Time:20190124T00:08:14.70572408:00User@Host:@Id:Schema:sentrymetaLast_errno:0Killed:0Query_time:0.315758Lock_
为什么mysql不推荐使用雪花ID作为主键
作者:毛辰飞背景在mysql中设计表的时候,mysql官方推荐不要使用uuid或者不连续不重复的雪花id(long形且唯一),而是推荐连续自增的主键id,官方的推荐是auto_increment,那么为什么不建议采用uuid,使用uuid究
Python进阶者 Python进阶者
11个月前
Excel中这日期老是出来00:00:00,怎么用Pandas把这个去除
大家好,我是皮皮。一、前言前几天在Python白银交流群【上海新年人】问了一个Pandas数据筛选的问题。问题如下:这日期老是出来00:00:00,怎么把这个去除。二、实现过程后来【论草莓如何成为冻干莓】给了一个思路和代码如下:pd.toexcel之前把这