chatglm2-6b在P40上做LORA微调

京东云开发者
• 阅读 305

背景:

目前,大模型的技术应用已经遍地开花。最快的应用方式无非是利用自有垂直领域的数据进行模型微调。chatglm2-6b在国内开源的大模型上,效果比较突出。本文章分享的内容是用chatglm2-6b模型在集团EA的P40机器上进行垂直领域的LORA微调。

一、chatglm2-6b介绍

github: https://github.com/THUDM/ChatGLM2-6B

chatglm2-6b相比于chatglm有几方面的提升:

1. 性能提升: 相比初代模型,升级了 ChatGLM2-6B 的基座模型,同时在各项数据集评测上取得了不错的成绩;

2. 更长的上下文: 我们将基座模型的上下文长度(Context Length)由 ChatGLM-6B 的 2K 扩展到了 32K,并在对话阶段使用 8K 的上下文长度训练;

3. 更高效的推理: 基于 Multi-Query Attention 技术,ChatGLM2-6B 有更高效的推理速度和更低的显存占用:在官方的模型实现下,推理速度相比初代提升了 42%;

4. 更开放的协议: ChatGLM2-6B 权重对学术研究完全开放,在填写问卷进行登记后亦允许免费商业使用。

二、微调环境介绍

2.1 性能要求

推理这块,chatglm2-6b在精度是fp16上只需要14G的显存,所以P40是可以cover的。

chatglm2-6b在P40上做LORA微调 

EA上P40显卡的配置如下:



2.2 镜像环境

做微调之前,需要编译环境进行配置,我这块用的是docker镜像的方式来加载镜像环境,具体配置如下:

FROM base-clone-mamba-py37-cuda11.0-gpu

# mpich
RUN yum install mpich  

# create my own environment
RUN conda create -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/ --override --yes --name py39 python=3.9
# display my own environment in Launcher
RUN source activate py39 \
    && conda install --yes --quiet ipykernel \
    && python -m ipykernel install --name py39 --display-name "py39"

# install your own requirement package
RUN source activate py39 \
    && conda install -y -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/ \
    pytorch  torchvision torchaudio faiss-gpu \
    && pip install --no-cache-dir  --ignore-installed -i https://pypi.tuna.tsinghua.edu.cn/simple \
    protobuf \
    streamlit \
    transformers==4.29.1 \
    cpm_kernels \
    mdtex2html \
    gradio==3.28.3 \
    sentencepiece \
    accelerate \
    langchain \
    pymupdf \
    unstructured[local-inference] \
    layoutparser[layoutmodels,tesseract] \
    nltk~=3.8.1 \
    sentence-transformers \
    beautifulsoup4 \
    icetk \
    fastapi~=0.95.0 \
    uvicorn~=0.21.1 \
    pypinyin~=0.48.0 \
    click~=8.1.3 \
    tabulate \
    feedparser \
    azure-core \
    openai \
    pydantic~=1.10.7 \
    starlette~=0.26.1 \
    numpy~=1.23.5 \
    tqdm~=4.65.0 \
    requests~=2.28.2 \
    rouge_chinese \
    jieba \
    datasets \
    deepspeed \
    pdf2image \
    urllib3==1.26.15 \
    tenacity~=8.2.2 \
    autopep8 \
    paddleocr \
    mpi4py \
    tiktoken

如果需要使用deepspeed方式来训练, EA上缺少mpich信息传递工具包,需要自己手动安装。

2.3 模型下载

huggingface地址: https://huggingface.co/THUDM/chatglm2-6b/tree/main

三、LORA微调

3.1 LORA介绍

paper: https://arxiv.org/pdf/2106.09685.pdf

LORA(Low-Rank Adaptation of Large Language Models)微调方法: 冻结预训练好的模型权重参数,在冻结原模型参数的情况下,通过往模型中加入额外的网络层,并只训练这些新增的网络层参数。



LoRA 的思想:

•在原始 PLM (Pre-trained Language Model) 旁边增加一个旁路,做一个降维再升维的操作。

•训练的时候固定 PLM 的参数,只训练降维矩阵A与升维矩B。而模型的输入输出维度不变,输出时将BA与 PLM 的参数叠加。

•用随机高斯分布初始化A,用 0 矩阵初始化B,保证训练的开始此旁路矩阵依然是 0 矩阵。

3.2 微调

huggingface提供的peft工具可以方便微调PLM模型,这里也是采用的peft工具来创建LORA。

peft的github: https://gitcode.net/mirrors/huggingface/peft?utm_source=csdn_github_accelerator

加载模型和lora微调:

    # load model
    tokenizer = AutoTokenizer.from_pretrained(args.model_dir, trust_remote_code=True)
    model = AutoModel.from_pretrained(args.model_dir, trust_remote_code=True)

    print("tokenizer:", tokenizer)

    # get LoRA model
    config = LoraConfig(
        r=args.lora_r,
        lora_alpha=32,
        lora_dropout=0.1,
        bias="none",)

    # 加载lora模型
    model = get_peft_model(model, config)
    # 半精度方式
    model = model.half().to(device)

这里需要注意的是,用huggingface加载本地模型,需要创建work文件,EA上没有权限在没有在.cache创建,这里需要自己先制定work路径。

import os
os.environ['TRANSFORMERS_CACHE'] = os.path.dirname(os.path.abspath(__file__))+"/work/"
os.environ['HF_MODULES_CACHE'] = os.path.dirname(os.path.abspath(__file__))+"/work/"

如果需要用deepspeed方式训练,选择你需要的zero-stage方式:

    conf = {"train_micro_batch_size_per_gpu": args.train_batch_size,
            "gradient_accumulation_steps": args.gradient_accumulation_steps,
            "optimizer": {
                "type": "Adam",
                "params": {
                    "lr": 1e-5,
                    "betas": [
                        0.9,
                        0.95
                    ],
                    "eps": 1e-8,
                    "weight_decay": 5e-4
                }
            },
            "fp16": {
                "enabled": True
            },
            "zero_optimization": {
                "stage": 1,
                "offload_optimizer": {
                    "device": "cpu",
                    "pin_memory": True
                },
                "allgather_partitions": True,
                "allgather_bucket_size": 2e8,
                "overlap_comm": True,
                "reduce_scatter": True,
                "reduce_bucket_size": 2e8,
                "contiguous_gradients": True
            },
            "steps_per_print": args.log_steps
            }

其他都是数据处理处理方面的工作,需要关注的就是怎么去构建prompt,个人认为在领域内做微调构建prompt非常重要,最终对模型的影响也比较大。

四、微调结果

目前模型还在finetune中,batch=1,epoch=3,已经迭代一轮。

chatglm2-6b在P40上做LORA微调

点赞
收藏
评论区
推荐文章
GoCoding GoCoding
3年前
TorchVision Faster R-CNN 微调,实战 Kaggle 小麦检测
本文将利用TorchVisionFasterRCNN预训练模型,于Kaggle:全球小麦检测(https://www.kaggle.com/c/globalwheatdetection)🌾上实践迁移学习中的一种常用技术:微调(finetuning)。本文相关的KaggleNotebooks可见:TorchVis
GPT大语言模型Alpaca-lora本地化部署实践【大语言模型实践一】 | 京东云技术团队
本文进行本地化部署实践的Alpacalora模型就是Alpaca模型的低阶适配版本。本文将对Alpacalora模型本地化部署、微调和推理过程进行实践并描述相关步骤。
揭秘ChatGPT,如何打造自己的自定义指令 | 京东云技术团队
在大语言模型的训练中,经常会看到InstructTuning(指令微调)这个单词,GPT家族中也有一个InstructGPT的模型(指令微调后的GPT),通过指令微调的LLM会更按照我们期望的方式输出
chatglm2-6b在P40上做LORA微调 | 京东云技术团队
目前,大模型的技术应用已经遍地开花。最快的应用方式无非是利用自有垂直领域的数据进行模型微调。chatglm26b在国内开源的大模型上,效果比较突出。本文章分享的内容是用chatglm26b模型在集团EA的P40机器上进行垂直领域的LORA微调。
DeepSpeed: 大模型训练框架 | 京东云技术团队
目前,大模型的发展已经非常火热,关于大模型的训练、微调也是各个公司重点关注方向。但是大模型训练的痛点是模型参数过大,动辄上百亿,如果单靠单个GPU来完成训练基本不可能。所以需要多卡或者分布式训练来完成这项工作。
大语言模型微调数据竞赛,冠军!
近日,天池FTDataRanker竞赛落下帷幕,天翼云智能边缘事业部AI团队(后称天翼云AI团队)凭借在大语言模型(LLM)训练数据增强方面的卓越研究,荣获大语言模型微调数据竞赛——7B模型赛道冠军。
京东云开发者 京东云开发者
1个月前
智慧之锤|如何通过有监督微调锻造大模型
作者:京东物流李雪婷本文为《大规模语言模型从理论到实践》第五章有监督微调的学习笔记,在介绍基本内容的同时会补充一些扩展知识和案例来帮助大家更好地理解该章。一、前言大模型调整的历程经历了显著的演变,从最初的“预训练微调”范式开始,模型首先在大规模无监督数据上
AGIC.TWang AGIC.TWang
2星期前
大模型推理GPT | DeepSeek | Doubao
AIGC发展到现在,大模型已经逐渐在大家的知识探索、学习知识、搜索领域的重要帮手,那么从普通大众认知角度,到底能做到什么程度,我们选三个当前知名度较高的大模型进行验证和对比。GPT4o:OpenAI大模型代表,大模型的标杆DeepSeek:深度求索的大模型,当前最火爆的大模型,低成本高效能的杰出代表。(也是作为开发者的我最喜爱的大模型)Doubao:字节跳动的大模型,也是国内断崖领先的大模型应用豆包的底层模型。(豆包App是基于该大模型的应用,做了大量其他辅助工作,如搜索等,因此该大模型表现的能力,不能完全和豆包App划等号)