在本项目中,我们将展示如何使用Python和机器学习技术来识别英文数字验证码。英文数字验证码通常包含了一系列随机生成的字母和数字,我们将利用机器学习模型来训练识别这些验证码。
首先,我们需要导入所需的库:
python
import os import numpy as np import cv2 from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelBinarizer from sklearn.metrics import classification_report from sklearn.ensemble import RandomForestClassifier 然后,我们定义一个函数来加载并预处理验证码图像数据:
python
def load_and_preprocess_data(data_directory): data = [] labels = []
for folder in os.listdir(data_directory):
for file in os.listdir(os.path.join(data_directory, folder)):
image_path = os.path.join(data_directory, folder, file)
image = cv2.imread(image_path)
image_gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
image_resized = cv2.resize(image_gray, (28, 28))
data.append(image_resized.flatten())
labels.append(folder)
data = np.array(data, dtype="float") / 255.0
labels = np.array(labels)
return data, labels
接下来,我们加载数据并将其拆分为训练集和测试集:
python
data_directory = "captcha_images" data, labels = load_and_preprocess_data(data_directory)
(trainX, testX, trainY, testY) = train_test_split(data, labels, test_size=0.25, random_state=42) 然后,我们使用标签二值化技术对标签进行编码:
python
lb = LabelBinarizer().fit(trainY) trainY = lb.transform(trainY) testY = lb.transform(testY) 接着,我们训练一个随机森林分类器模型:
python
model = RandomForestClassifier(n_estimators=100, random_state=42) model.fit(trainX, trainY) 最后,我们评估模型性能并输出分类报告:
python
predictions = model.predict(testX) print(classification_report(testY.argmax(axis=1), predictions.argmax(axis=1), target_names=lb.classes_)) 更多内容联系q1436423940