小万哥 小万哥
6个月前
NumPy 二项分布生成与 Seaborn 可视化技巧
二项分布是描述固定次数独立试验中成功次数的概率分布,常用于分析二元结果的事件,如抛硬币。分布由参数n(试验次数)、p(单次成功概率)和k(成功次数)定义。概率质量函数P(k)C(n,k)p^k(1p)^(nk)。NumPy的random.binomial()可生成二项分布数据,Seaborn可用于可视化。当n大且p接近0.5时,二项分布近似正态分布。练习包括模拟不同条件下的二项分布和应用到考试场景。
Linux VXLAN小实验
VXLAN在云网络中应用十分广泛。本文介绍一种方法在两台Linux主机之间建立简单的VXLAN隧道,以供学习、研究之用。
带你走进量子云平台(二)
量子叠加和量子纠缠这两个基本特性,使得量子计算机在解决某些类型的问题时比经典计算机快得多。这两个属性从本质上决定了一个基本事实——量子计算天然地由概率主导。换句话说,这意味着量子程序本质上是概率性的、随机的。因此,要在量子计算机上实现业务逻辑或算法需要独特的编程模型。
小万哥 小万哥
6个月前
NumPy 均匀分布模拟及 Seaborn 可视化教程
本文介绍了均匀分布和逻辑分布。均匀分布是连续概率分布,所有事件在指定范围内有相等概率发生,常用于随机数生成。其概率密度函数为f(x)1/(ba),其中a和b分别为下限和上限。NumPy的random.uniform()可生成均匀分布的随机数。Seaborn可用于可视化分布。文中还提供了练习及解决方案,包括生成不同范围的均匀分布随机数、比较分布形状变化及模拟抛硬币实验。逻辑分布则常用于S形增长现象的建模,其PDF为(scale/(π(1(xloc)/scale)^2)),由位置参数loc和尺度参数scale定义。
小万哥 小万哥
6个月前
多项分布模拟及 Seaborn 可视化教程
多项分布是二项分布的推广,描述了在n次试验中k种不同事件出现次数的概率分布。参数包括试验次数n、结果概率列表pvals(和为1)和输出形状size。PMF公式展示了各结果出现次数的概率。NumPy的random.multinomial()可生成多项分布数据。练习包括模拟掷骰子和抽奖活动。解决方案提供了相关图表绘制代码。关注公众号“LetusCoding”获取更多内容。
小万哥 小万哥
6个月前
卡方分布和 Zipf 分布模拟及 Seaborn 可视化教程
卡方分布是统计学中的一种连续概率分布,用于假设检验,形状由自由度(df)决定。自由度越大,分布越平缓。NumPy的random.chisquare()可生成卡方分布随机数。Seaborn能可视化卡方分布。练习包括模拟不同自由度的卡方分布、进行卡方检验。瑞利分布描述信号处理中幅度分布,参数为尺度(scale)。Zipf分布常用于自然语言等幂律特征数据,参数a控制形状。NumPy的random.zipf()生成Zipf分布随机数。
小万哥 小万哥
6个月前
NumPy 通用函数(ufunc):高性能数组运算的利器
NumPy的通用函数(ufunc)提供高性能的逐元素运算,支持向量化操作和广播机制,能应用于数组的数学、逻辑和比较运算。ufunc可提高计算速度,避免低效的循环,并允许自定义函数以满足特定需求。例如,ufunc实现加法比循环更高效。通过frompyfunc可创建自定义ufunc。判断函数是否为ufunc,可检查其类型是否为numpy.ufunc。ufunc练习包括数组的平方、平方根、元素积及性能对比。
小万哥 小万哥
6个月前
NumPy 舍入小数、对数、求和和乘积运算详解
NumPy提供五种舍入小数的方法:trunc(),fix(),around(),floor(),ceil()。此外,它还支持对数运算,如log2(),log10(),log(),以及自定义底数的对数。NumPy的sum()和prod()函数用于数组求和与乘积,可指定轴进行计算,cumsum()和cumprod()实现累积求和与乘积。关注公众号"LetusCoding"获取更多内容。