深度学习技术开发与应用
关键点1.强化学习的发展历程2.马尔可夫决策过程3.动态规划4.无模型预测学习5.无模型控制学习6.价值函数逼近7.策略梯度方法8.深度强化学习DQN算法系列9.深度策略梯度DDPG,PPO等第一天9:0012:0014:0017:00一、强化学习概述1.强化学习介绍2.强化学习与其它机器学习的不同3.强化学习发展历史4.强化学习典
徐小夕 徐小夕
3年前
深入浅出node中间件原理
前言中间件是介于应用系统和系统软件之间的一类软件,它使用系统软件所提供的基础服务(功能),衔接网络上应用系统的各个部分或不同的应用,能够达到资源共享、功能共享的目的。在NodeJS中,中间件主要是指封装http请求细节处理的方法。我们都知道在http请求中往往会涉及很多动作,如下:IP筛选查询字符串传递请求体解析cookie信息处理
Stella981 Stella981
3年前
Kafka学习(学习过程记录)
Apachekafka这,仅是我学习过程中记录的笔记。确定了一个待研究的主题,对这个主题进行全方面的剖析。笔记是用来方便我回顾与学习的,欢迎大家与我进行交流沟通,共同成长。不止是技术。Kafka介绍与面向MQ编程模式介绍springboot整合ApacheKafka!image20200131104759
Wesley13 Wesley13
3年前
###好好好#####迁移学习(Transfer)
迁移学习(Transfer),面试看这些就够了!(附代码)1\.什么是迁移学习迁移学习(TransferLearning)是一种机器学习方法,就是把为任务A开发的模型作为初始点,重新使用在为任务B开发模型的过程中。迁移学习是通过从已学习的相关任务中转移知识
从零开始初识机器学习 | 京东云技术团队
本篇文章中我们将对机器学习做全面的了解与介绍,其中第一章初识机器学习分为上下两个小章节,对机器学习是什么、机器学习由来以及机器学习的理论等展开说明。目的是能让即便完全没接触过机器学习的人也能在短时间对机器学习有一个全面了解。
迁移学习(Transfer Learning)的背景、历史及学习课
迁移学习(TransferLearning)的背景、历史及学习人工智能培训网chinaai.org迁移学习的背景、历史及学习1、迁移学习提出背景在机器学习、深度学习和数据挖掘的大多数任务中,我们都会假设training和inference时,采用的数据服从相同的分布(distribution)、来源于相同的特征空间(featurespace)。但
迁移学习(Transfer Learning)
1.深入了解神经网络的组成、训练和实现,掌握深度空间特征分布等关键概念;2.掌握迁移学习的思想与基本形式,了解传统迁移学习的基本方法,对比各种方法的优缺点;3.握深度迁移学习的思想与组成模块,学习深度迁移学习的各种方法;4.掌握深度迁移学习的网络结构设计、目标函数设计的前沿方法,了解迁移学习在PDA、SourceFreeDA上的应用;5.掌握深度迁移学习在
17个机器学习的常用算法!
根据数据类型的不同,对一个问题的建模有不同的方式。在机器学习或者人工智能领域,人们首先会考虑算法的学习方式。在机器学习领域,有几种主要的学习方式。将算法按照学习方式分类是一个不错的想法,这样可以让人们在建模和算法选择的时候考虑能根据输入数据来选择最合适的算法来获得最好的结果。1.监督式学习:2.非监督式学习:在非监督式学习中,数据并不被特别标识,学习模