推荐
专栏
教程
课程
飞鹅
本次共找到977条
bp神经网络算法
相关的信息
MLtech
•
3年前
图神经网络(Graph Neural Networks)概述
论文:AComprehensiveSurveyonGraphNeuralNetworks一篇关于图神经网络的综述文章,着重介绍了图卷积神经网络(GCN),回顾了近些年的几个主要的图神经网络的的体系:图注意力网络、图自编码机、图生成网络、图时空网络。1、介绍传统的机器学习所用到的数据是欧氏空间(Euclidea
Easter79
•
3年前
tensorflow 之循环神经网络
应用场景:应用于语音识别语音翻译机器翻译RNNRNN(RecurrentNeuralNetworks,循环神经网络)不仅会学习当前时刻的信息,也会依赖之前的序列信息。由于其特殊的网络模型结构解决了信息保存的问题。所以RNN对处理时间序列和语言文本序列问题有独特的优势。递归神经网络都具有一连串重复神经网络模
Wesley13
•
3年前
QUIC协议原理分析(转)
之前深入了解了一下HTTP1.1、2.0、SPDY等协议,发现HTTP层怎么优化,始终要面对TCP本身的问题。于是了解到了QUIC,这里分享一篇之前找到的有意义的文章。原创地址:https://mp.weixin.qq.com/s/vpz6bp3PT1IDzZervyOfqw(https://www.oschina.net/action/
Wesley13
•
3年前
7天搞定图神经网络,实战助力新冠疫情防控!
点击左上方蓝字关注我们!(https://oscimg.oschina.net/oscnet/up73c93dd40612aaa3c513622a0e81e3de.gif)要问这几年一直在逆势而上的技术有哪些?你一定不会忽略它——图神经网络。相比传统神经网络,图神经网络的优势非常明显:1、非顺序排序的特征学习:G
Wesley13
•
3年前
AI新闻报
!(https://oscimg.oschina.net/oscnet/e3d2b223367f4b3cb23e6fa85f03ce89.png"圣诞鹿引导关注")1.【论文】聚焦快速机器学习训练算法,UC伯克利尤洋189页博士论文公布过去十年,深度学习应用领域的数据量迅速增长,使得深度神经网络(DNN)的训练时
helloworld_54277843
•
2年前
使用深度学习进行图像分类
解决任何真实问题的重要一步是获取数据。Kaggle提供了大量不同数据科学问题的竞赛。我们将挑选一个2014年提出的问题,然后使用这个问题测试本章的深度学习算法,并在第5章中进行改进,我们将基于卷积神经网络(CNN)和一些可以使用的高级技术来改善图像识别模型的性能。大家可以从https://www.kaggle.com/c/dogsvscats/data下载数
helloworld_54277843
•
2年前
递归神经网络(RNN)
递归神经网络(RNN)RNN是最强大的模型之一,它使我们能够开发如分类、序列数据标注、生成文本序列(例如预测下一输入词的SwiftKeykeyboard应用程序),以及将一个序列转换为另一个序列(比如从法语翻译成英语的语言翻译)等应用程序。大多数模型架构(如前馈神经网络)都没有利用数据的序列特性。例如,我们需要数据呈现出向量中每个样例的特征,如表示句子、段
helloworld_91538976
•
2年前
使用深度学习进行图像分类
使用深度学习进行图像分类解决任何真实问题的重要一步是获取数据。Kaggle提供了大量不同数据科学问题的竞赛。我们将挑选一个2014年提出的问题,然后使用这个问题测试本章的深度学习算法,并在第5章中进行改进,我们将基于卷积神经网络(CNN)和一些可以使用的高级技术来改善图像识别模型的性能。大家可以从https://www.kaggle.com/c/dogsvs
helloworld_91538976
•
2年前
递归神经网络(RNN)
递归神经网络(RNN)RNN是最强大的模型之一,它使我们能够开发如分类、序列数据标注、生成文本序列(例如预测下一输入词的SwiftKeykeyboard应用程序),以及将一个序列转换为另一个序列(比如从法语翻译成英语的语言翻译)等应用程序。大多数模型架构(如前馈神经网络)都没有利用数据的序列特性。例如,我们需要数据呈现出向量中每个样例的特征,如表示句子、段
1
•••
3
4
5
•••
98