Stella981 Stella981
3年前
Hystrix 停止开发。。。Spring Cloud 何去何从?
!(https://oscimg.oschina.net/oscnet/8f265631921542e3b74f72b2759d88a5.png)栈长得到消息,Hystrix停止开发了。。。大家如果有对Hystrix不清楚的,请看下这篇文章:分布式服务防雪崩熔断器,Hystrix理论实战(https://www.oschina
Stella981 Stella981
3年前
Spring Cloud Alibaba:Sentinel实现熔断与限流
一、什么是SentinelSentinel,中文翻译为哨兵,是为微服务提供流量控制、熔断降级的功能,它和Hystrix提供的功能一样,可以有效的解决微服务调用产生的“雪崩效应”,为微服务系统提供了稳定性的解决方案。随着Hystrix进入了维护期,不再提供新功能,Sentinel是一个不错的替代方案。通常情况下,Hystrix采用线程池对服务的调用
Stella981 Stella981
3年前
PHP 一致性hash算法初研究
问题来源:!(https://static.oschina.net/uploads/space/2017/1201/110233_AKPx_2409514.png)1、当所有用户都请求同一个key的时候如图所示,会导致缓存限流,从而访问db,产生雪崩,最后服务器负载严重,从而使业务垮掉2、当增加或者删减缓存服务器时,如何最大化的不令数据重新
Stella981 Stella981
3年前
Redis 总结精讲
本文围绕以下几点进行阐述1、为什么使用redis2、使用redis有什么缺点3、单线程的redis为什么这么快4、redis的数据类型,以及每种数据类型的使用场景5、redis的过期策略以及内存淘汰机制6、redis和数据库双写一致性问题7、如何应对缓存穿透和缓存雪崩问题8、如何解决redis的并发竞争问题
Stella981 Stella981
3年前
Mongodb特定场景性能数十倍提升优化实践(记一次mongodb核心集群雪崩故障)
1\.问题背景某核心JAVA长连接服务使用mongodb作为主要存储,客户端数百台机器连接同一mongodb集群,短期内出现多次性能抖动问题,此外,还出现一次“雪崩”故障,同时流量瞬间跌零,无法自动恢复。本文分析这两次故障的根本原因,包括客户端配置使用不合理、mongodb内核链接认证
Stella981 Stella981
3年前
Sentinel 流量控制 熔断降级 初探
    还记得之前写过一篇防雪崩利器:熔断器Hystrix的原理与使用https://my.oschina.net/u/3266761/blog/2654470,讲述了服务降级和熔断的控制,今天带来另一个流量控制与服务降级阿里开源框架sentinel。  首先是两者的对比:    Hystrix的关注点在于以隔离和熔断为主的容错机制
Stella981 Stella981
3年前
Redis缓存总结:淘汰机制、缓存雪崩、数据不一致....
越努力,越幸运,本文已收藏在Gitee中JavaCommunity(https://gitee.com/JavaCommunity/JavaCommunity),里面有面试分享、源码分析系列文章,欢迎收藏,点赞https://gitee.com/JavaCommunity/JavaCommunity(https://gite
Stella981 Stella981
3年前
Redis缓存穿透、缓存雪崩、并发问题分析与解决方案
(一)缓存和数据库间数据一致性问题分布式环境下(单机就不用说了)非常容易出现缓存和数据库间的数据一致性问题,针对这一点的话,只能说,如果你的项目对缓存的要求是强一致性的,那么请不要使用缓存。我们只能采取合适的策略来降低缓存和数据库间数据不一致的概率,而无法保证两者间的强一致性。合适的策略包括合适的缓存更新策略,更新数
Stella981 Stella981
3年前
Redis 内存管理策略
背景Redis很多时候都是在使用内存,数据一直写,但内存是有限的,如果Redis内存满了,那么我们的很多缓存操作都会超时、失败,接着可能会引发雪崩。那么当内存达到阀值Redis是怎么处理的呢?配置内存限制maxmemory我们可以通过在配置文件中配置maxmemory来限制内存的最大使用情况。如果maxmem
Stella981 Stella981
3年前
Redis 缓存问题及解决方案
【相关概念】缓存击穿:指的是一些热点数据过期,由于热点数据存在并发量大的特性,所以短时间内对数据库的造成很大的冲击,导致系统瘫痪。常见于例如微博系统中明星结婚或出轨时微博瘫痪的情况。缓存雪崩:指的是大量数据或全部数据集中过期失效的情况,这种情况是由于大量数据设置了相同的过期时间而导致的。【使用缓存的流程】