Python进阶者 Python进阶者
2年前
多张excel表做连接,就比如1表有A,B,C列,2表有A,B,D列,我想把A,B,C,D合到一张表
大家好,我是皮皮。一、前言前几天在Python铂金群有个叫【水方人子】的粉丝问了一个关于excel处理的问题,这里拿出来给大家分享下,一起学习。能不能把多张excel表做连接,就比如1表有A,B,C列,2表有A,B,D列,我想把A,B,C,D合到一张表上面,可以吗,就跟数据库左连接一样?二、解决过程一开始想到的方法是Excel中的vlookup函数,确实
翼
3年前
前端使用低功耗蓝牙开发的坑1(分包操作之分包接收)
最近用uniapp开发微信小程序的一个项目中用到了低功耗蓝牙,但是其中收包,发包的时候不能超过20字节,所以就需要我们来进行分包操作了接收蓝牙设备传过来的数据,并进行分包接收处理说明:我项目中的数据结构中05是帧头,FE是帧尾,所以需要判断接收到的这个数据是否是05开头,FE结尾,我是将接收到的数据保存到了缓存中image.png(h
红橙Darren 红橙Darren
3年前
C进阶 - 内存四驱模型
一.内存四驱模型不知我们是否有读过《深入理解java虚拟机》这本书,强烈推荐读一下。在java中我们将运行时数据,分为五个区域分别是:程序计数器,java虚拟机栈,本地方法栈,java堆,方法区。在c/c中我们将运行时数据,分为四个区域分别是:栈区,堆区,数据区,代码区。我们详细来介绍下:1.栈区:由编译器自动分配释放,存放函数的
Kubrnete Kubrnete
3年前
某个加密大马的解密
我们先来大致看看这个webshell长什么样下面的就是用base64进行编码后的样子,因为太长我就不给图了这里就是这个脚本余下的内容了,最下面的那个函数也就是解开这个加密whellshell的秘钥了,进过观察后我们发现了两个可以点,第一个就是那一大段的base64编码,然后就是那下面的一段,查了一下说是ECMAScript既然这样,我们先按照常规思路将被b
Stella981 Stella981
3年前
Lucene5.5学习(1)
认识Lucene下面是百科对Lucene的描述:Lucene是apache软件基金会4jakarta项目组的一个子项目,是一个开放源代码的全文检索引擎工具包,但它不是一个完整的全文检索引擎,而是一个全文检索引擎的架构,提供了完整的查询引擎和索引引擎,部分文本分析引擎(英文与德文两种西方语言)。Lucene的目的是为软件开发人员提供一个简单易
Stella981 Stella981
3年前
Android OpenCV(十七):高斯噪声
高斯噪声高斯噪声是指它的概率密度函数服从高斯分布(即正态分布)的一类噪声。常见的高斯噪声包括起伏噪声、宇宙噪声、热噪声和散粒噪声等等。这类噪声主要来源于电子电路噪声和低照明度或高温带来的传感器噪声,也成为正态噪声,是在实践中经常用到的噪声模型。区别于椒盐噪声随机出现在图像中的任意位置,高斯噪声出现在图像中的所有位置。且概率密度函
Easter79 Easter79
3年前
springMVC两种方式实现多文件上传及效率比较
springMVC实现多文件上传的方式有两种,一种是我们经常使用的以字节流的方式进行文件上传,另外一种是使用springMVC包装好的解析器进行上传。这两种方式对于实现多文件上传效率上却有着很大的差距,下面我们通过实例来看一下这两种方式的实现方式,同时比较一下在效率上到底存在着多大的差距。1.下载相关jar包。需要引入的jar出了springMVC的ja
Wesley13 Wesley13
3年前
Java基础学习心得笔记
对于很多只会C语言的初学者而言,面对java基础语法学习,反而感觉很难,其实其中最大的问题不是语法难,而是一种编程思想的转变。面向过程就是把你的代码封装成函数,然后依次去做一件事情,面向过程是把你要做的事情抽象成对象,告诉对象去做。所以要想学好java入门,必须知道类和对象的概念。类是对生活中事物的抽象描述,比如人类,动物类,交通工具类;对象即是对类的具
Wesley13 Wesley13
3年前
@Autowired和@Resource注解的一个意外重要区别
今天上午,因为公司要跟客户展示最近开发的项目,然后安排了我重新构建一个template项目,用来向客户展示参考。基于已开发好的代码,我在进行一些简化抽取的时候出现了一个有趣的问题因为我们有一个springsecurity配置类时需要每个模块都使用,就是可能有些参数不同,现在我把他弄到一个公共的jar包,把之前类拷贝进去,然后把参数写活,结果出现了一些有
小万哥 小万哥
6个月前
NumPy 二项分布生成与 Seaborn 可视化技巧
二项分布是描述固定次数独立试验中成功次数的概率分布,常用于分析二元结果的事件,如抛硬币。分布由参数n(试验次数)、p(单次成功概率)和k(成功次数)定义。概率质量函数P(k)C(n,k)p^k(1p)^(nk)。NumPy的random.binomial()可生成二项分布数据,Seaborn可用于可视化。当n大且p接近0.5时,二项分布近似正态分布。练习包括模拟不同条件下的二项分布和应用到考试场景。