Wesley13 Wesley13
3年前
java多线程——volatile
这是java多线程第三篇:《java多线程—线程怎么来的》(https://my.oschina.net/u/1859679/blog/1517807)《java多线程内存模型》(https://my.oschina.net/u/1859679/blog/1525343)上一篇《java多线程—内存模型》已经讲解了java
黎明之道 黎明之道
4年前
天池比赛数据挖掘心电图模型融合
Task5:模型融合5.1学习目标学习融合策略完成相应学习打卡任务5.2内容介绍https://mlwave.com/kaggleensemblingguide/https://github.com/MLWave/KaggleEnsembleGuide模型融合是比赛后期一个重要的环节,大体来说有如下的类型方式。1
Easter79 Easter79
3年前
SpringMVC 之 ModelAndView和ModelAttribute的使用
ModelAndView解释:Thisclassmerelyholdsbothtomakeitpossibleforacontrollertoreturnbothmodelandviewinasinglereturnvalue.这类控制器可以同时返回视图和模型数据.
Stella981 Stella981
3年前
Python与R的争锋:大数据初学者该怎样选?
在当下,人工智能的浪潮席卷而来。从AlphaGo、无人驾驶技术、人脸识别、语音对话,到商城推荐系统,金融业的风控,量化运营、用户洞察、企业征信、智能投顾等,人工智能的应用广泛渗透到各行各业,也让数据科学家们供不应求。Python和R作为机器学习的主流语言,受到了越来越多的关注。数据学习领域的新兵们经常不清楚如何在二者之间做出抉择,本文就语言特性与使用场景为大
Stella981 Stella981
3年前
Soft
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布!Abstract:我们提出了一种新的方法,通过端到端的训练策略来学习深度架构中的可压缩表征。我们的方法是基于量化和熵的软(连续)松弛,我们在整个训练过程中对它们的离散对应体进行了退火。我们在两个具有挑战性的应用中展示了这种方法:图像压缩和神经网络压缩。虽然这些任务通常是用不同的方法来处理的
轻量化安装 TKEStack:让已有 K8s 集群拥有企业级容器云平台的能力
关于我们更多关于云原生的案例和知识,可关注同名【腾讯云原生】公众号福利:①公众号后台回复【手册】,可获得《腾讯云原生路线图手册》&《腾讯云原生最佳实践》②公众号后台回复【系列】,可获得《15个系列100篇超实用云原生原创干货合集》,包含Kubernetes降本增效、K8s性能优化实践、最佳实践等系列。③公众号后台回复【白皮书】,可获得《腾讯云容器安
利用ChatGPT提升测试工作效率——测试工程师的新利器(一) | 京东云技术团队
在测试工作中可以辅助功能测试包括需求分析或解读代码(注意代码安全)后生成测试用例,还可以辅助生成代码,接口测试用例,自动化脚本等各个方向起作用。当然实际使用中可能会因为提示词的不同生成的结果需要人工多次对话训练才可以。但是使用chatGPT肯定比不用能提高工作效率。当然具体落地后如何进行量化提效抽象等等问题依然在探索中,迈开第一步后依然任重而道远。
第一!天翼云荣获国际人工智能顶会AAAI 2024大模型数学理解&推理竞赛冠军!
近日,AAAI2024GlobalCompetitiononMathProblemSolvingandReasoning大赛落下帷幕,天翼云智能边缘事业部AI团队凭借在大模型基础能力研究领域的数据处理与模型训练策略的领先优势,在众多参赛队伍中脱颖而出,荣获本次竞赛冠军。
马尚 马尚
1年前
应用深度学习技术破解滑动验证码
要训练一个有效的深度学习模型来破解滑动验证码,首先需要大量的训练数据。这些数据包括滑动验证码的图片和对应的滑块位置。你可以通过爬虫技术从网站上收集这些数据,确保数据覆盖各种类型和难度的验证码。2.模型选择与训练在准备好数据后,接下来是选择合适的深度学习模型