推荐
专栏
教程
课程
飞鹅
本次共找到9条
肿瘤
相关的信息
简
•
3年前
深度剖析APP保活案例
这是作者在去年处理的一个关于进程保活的案例一.引言1.1保活概述什么是保活?保活就是在用户主动杀进程,或者系统基于当前内存不足状态而触发清理进程后,该进程设法让自己免于被杀的命运或者被杀后能立刻重生的手段。保活是”应用的蜜罐,系统的肿瘤“,应用高保活率给自己赢得在线时长,甚至做各种应用想做而用户不期望的行为,给系统带来的是不必要的耗电,以及系统额外的性
Stella981
•
3年前
BraTS18——多模态MR图像脑肿瘤分割挑战赛
之前挑战赛的数据都是以CT图像为主,而医学影像还有其他模态,例如核磁共振成像。今天我将分享如何对多模态MR图像脑肿瘤进行分割处理。为了方便大家学习理解整个分割流程,我将整个流程步骤进行了整理,并给出每个步骤的结果,希望对大家有所帮助。一、脑肿瘤图像分析与预处理(1)、获取多模态MR图像属性信息。读取原始图像,显示图像大小,Spacing信
Stella981
•
3年前
BraTS18——多模态MR图像脑肿瘤分割挑战赛续5
今天将继续分享从网络结构上进行改进提出SCSEVNet模型来分割脑肿瘤。为了方便大家学习理解整个分割流程,我将整个流程步骤进行了整理,并给出每个步骤的结果,希望对大家有所帮助。一、SCSENet模块介绍17年Momenta胡杰团队提出SqueezeandExcitationNetworks(简称SENet)后BraTS18——多模
Stella981
•
3年前
BraTS18——多模态MR图像脑肿瘤分割挑战赛续7
今天将继续分享从网络结构上进行改进提出NonLocalVNet模型来分割脑肿瘤。为了方便大家学习理解整个分割流程,我将整个流程步骤进行了整理,并给出每个步骤的结果,希望对大家有所帮助。一、NonLocal模块介绍在前面的文章中已经介绍过NonLocal模块,其主要思想就是自注意力机制,详细介绍请阅读Tensorflow入门教程(三十二)—
Stella981
•
3年前
BraTS18——多模态MR图像脑肿瘤分割挑战赛续
!(https://oscimg.oschina.net/oscnet/ed6b352f2e0735ea0a39fd7797f7232a830.jpg)前面已经分享过对多模态MR图像脑肿瘤进行分割处理的例子。今天将继续分享使用多分类Focalloss函数来训练分割网络。为了方便大家学习理解整个分割流程,我将整个流程步骤进行了整理,并给出每个步骤的结果
Stella981
•
3年前
LiTS——肝肿瘤分割挑战赛(四)
在上一篇文章中,初次提交了比赛成绩,结果不是特别理想。利用元旦三天假期和周末时间,把所有训练数据都用来肝训练和肿瘤训练。在测试数据上又进行一次推理,成绩相比第一次有一定幅度提高。肝分割成绩排行榜,在测试集上dice分数从原来的0.942提升到0.956,与第一名只有0.01的差距,基本上肝分割的结果已经相当不错了。!(https:
Stella981
•
3年前
BraTS18——多模态MR图像脑肿瘤分割挑战赛续4
今天将继续分享从网络结构上进行改进提出SEVNet模型来分割脑肿瘤。为了方便大家学习理解整个分割流程,我将整个流程步骤进行了整理,并给出每个步骤的结果,希望对大家有所帮助。一、SENet模块介绍Momenta胡杰团队从特征通道之间的关系出发,提出了SqueezeandExcitationNetworks(简称SENet),来显式地建
Stella981
•
3年前
BraTS18——多模态MR图像脑肿瘤分割挑战赛续9
今天将继续分享从网络结构上进行改进提出ETVNet模型来分割脑肿瘤。为了方便大家学习理解整个分割流程,我将整个流程步骤进行了整理,并给出每个步骤的结果,希望对大家有所帮助。一、EdgeGuidance模块介绍在论文《ETNetAGenericEdgeaTtentionGuidanceNetworkforMedi
Stella981
•
3年前
BraTS18——多模态MR图像脑肿瘤分割挑战赛续3
前面的文章中只对损失函数进行了不同尝试,今天将从网络结构上进行改进提出融合VNet模型来分割脑肿瘤。为了方便大家学习理解整个分割流程,我将整个流程步骤进行了整理,并给出每个步骤的结果,希望对大家有所帮助。一、脑肿瘤图像分析与预处理(1)、多模态MR脑肿瘤图像分析。分析的过程基本上跟上一篇一致,这里就不多言了,直接从数据处理开始。(2)
1