BraTS18——多模态MR图像脑肿瘤分割挑战赛续7

Stella981
• 阅读 777

今天将继续分享从网络结构上进行改进提出NonLocalVNet模型来分割脑肿瘤。为了方便大家学习理解整个分割流程,我将整个流程步骤进行了整理,并给出每个步骤的结果,希望对大家有所帮助。

一、NonLocal模块介绍

在前面的文章中已经介绍过NonLocal模块,其主要思想就是自注意力机制,详细介绍请阅读Tensorflow入门教程(三十二)——Non-Local VNet3DNonLocal模块结构如下所示。

BraTS18——多模态MR图像脑肿瘤分割挑战赛续7

复现的tensorflow实现代码如下所示。

def non_local_block(x, compression=2, scope=None):

二、脑肿瘤图像分析与预处理

(1)、多模态MR脑肿瘤图像分析。

分析的过程基本上跟上一篇一致,这里就不多言了,直接从数据处理开始。

(2)、准备脑肿瘤分割数据。

首先将4个模态序列的MR原始图像进行合并生成4个通道的三维图像,原始图像大小都是(240x240x155x1),合并后大小是(240x240x155x4);

其次对Mask图像进行one-hot操作,将原始图像大小都是(240x240x155x1),生成大小是(240x240x155x4):通道0中非零值区域是背景区域,通道1中非零值是坏疽区域,通道2中非零值是浮肿区域,通道3中非零值是增强肿瘤区域;

最后对图像和Mask进行分块——取Patch操作,生成若干个(128,128,64)大小的图像和Mask,判断并输出非零的Mask和对应的图像。

三、脑肿瘤分割

(1)、搭建NonLocalVNet3d模型,与VNet3d模型不同之处就是在解码网络的最后增加一个NonLocal模块,网络输入大小是(128x128x64)。

BraTS18——多模态MR图像脑肿瘤分割挑战赛续7

(2)、loss采用的是多类Focalloss,具体实现可以点击原文链接查看具体代码。

(3)、训练的损失函数和精度如下图所示。

BraTS18——多模态MR图像脑肿瘤分割挑战赛续7

BraTS18——多模态MR图像脑肿瘤分割挑战赛续7

(4)、脑肿瘤分割推理过程:首先将原始flair,T1,T2,T1ce图像一起读取进来并进行z-score标准化操作,然后将四个模态图像合并成4通道三维图像(240x240x155x4),输入到网络中去,网络输入大小是(240x240x48x4),在z方向上分块输入并拼接最终得到(240x240x155)分割结果。

(5)、进行了结果测试,左边是金标准图像,右边是预测结果图像,如下所示。

BraTS18——多模态MR图像脑肿瘤分割挑战赛续7

了大家更好的学习,我把GAVNet网络代码分享到github上:

https://github.com/junqiangchen/VNetFamily

如果大家觉得这个项目还不错,希望大家给个Star并Fork,可以让更多的人学习。 如果碰到任何问题,随时留言,我会尽量去回答的。

本文分享自微信公众号 - 最新医学影像技术(MedicalHealthNews)。
如有侵权,请联系 support@oschina.cn 删除。
本文参与“OSC源创计划”,欢迎正在阅读的你也加入,一起分享。

点赞
收藏
评论区
推荐文章
blmius blmius
3年前
MySQL:[Err] 1292 - Incorrect datetime value: ‘0000-00-00 00:00:00‘ for column ‘CREATE_TIME‘ at row 1
文章目录问题用navicat导入数据时,报错:原因这是因为当前的MySQL不支持datetime为0的情况。解决修改sql\mode:sql\mode:SQLMode定义了MySQL应支持的SQL语法、数据校验等,这样可以更容易地在不同的环境中使用MySQL。全局s
待兔 待兔
4个月前
手写Java HashMap源码
HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程22
Stella981 Stella981
3年前
BraTS18——多模态MR图像脑肿瘤分割挑战赛
之前挑战赛的数据都是以CT图像为主,而医学影像还有其他模态,例如核磁共振成像。今天我将分享如何对多模态MR图像脑肿瘤进行分割处理。为了方便大家学习理解整个分割流程,我将整个流程步骤进行了整理,并给出每个步骤的结果,希望对大家有所帮助。一、脑肿瘤图像分析与预处理(1)、获取多模态MR图像属性信息。读取原始图像,显示图像大小,Spacing信
Stella981 Stella981
3年前
BraTS18——多模态MR图像脑肿瘤分割挑战赛续5
今天将继续分享从网络结构上进行改进提出SCSEVNet模型来分割脑肿瘤。为了方便大家学习理解整个分割流程,我将整个流程步骤进行了整理,并给出每个步骤的结果,希望对大家有所帮助。一、SCSENet模块介绍17年Momenta胡杰团队提出SqueezeandExcitationNetworks(简称SENet)后BraTS18——多模
Stella981 Stella981
3年前
BraTS18——多模态MR图像脑肿瘤分割挑战赛续
!(https://oscimg.oschina.net/oscnet/ed6b352f2e0735ea0a39fd7797f7232a830.jpg)前面已经分享过对多模态MR图像脑肿瘤进行分割处理的例子。今天将继续分享使用多分类Focalloss函数来训练分割网络。为了方便大家学习理解整个分割流程,我将整个流程步骤进行了整理,并给出每个步骤的结果
Stella981 Stella981
3年前
BraTS18——多模态MR图像脑肿瘤分割挑战赛续4
今天将继续分享从网络结构上进行改进提出SEVNet模型来分割脑肿瘤。为了方便大家学习理解整个分割流程,我将整个流程步骤进行了整理,并给出每个步骤的结果,希望对大家有所帮助。一、SENet模块介绍Momenta胡杰团队从特征通道之间的关系出发,提出了SqueezeandExcitationNetworks(简称SENet),来显式地建
Stella981 Stella981
3年前
BraTS18——多模态MR图像脑肿瘤分割挑战赛续9
今天将继续分享从网络结构上进行改进提出ETVNet模型来分割脑肿瘤。为了方便大家学习理解整个分割流程,我将整个流程步骤进行了整理,并给出每个步骤的结果,希望对大家有所帮助。一、EdgeGuidance模块介绍在论文《ETNetAGenericEdgeaTtentionGuidanceNetworkforMedi
Stella981 Stella981
3年前
BraTS18——多模态MR图像脑肿瘤分割挑战赛续3
前面的文章中只对损失函数进行了不同尝试,今天将从网络结构上进行改进提出融合VNet模型来分割脑肿瘤。为了方便大家学习理解整个分割流程,我将整个流程步骤进行了整理,并给出每个步骤的结果,希望对大家有所帮助。一、脑肿瘤图像分析与预处理(1)、多模态MR脑肿瘤图像分析。分析的过程基本上跟上一篇一致,这里就不多言了,直接从数据处理开始。(2)
Wesley13 Wesley13
3年前
MySQL部分从库上面因为大量的临时表tmp_table造成慢查询
背景描述Time:20190124T00:08:14.70572408:00User@Host:@Id:Schema:sentrymetaLast_errno:0Killed:0Query_time:0.315758Lock_
Python进阶者 Python进阶者
10个月前
Excel中这日期老是出来00:00:00,怎么用Pandas把这个去除
大家好,我是皮皮。一、前言前几天在Python白银交流群【上海新年人】问了一个Pandas数据筛选的问题。问题如下:这日期老是出来00:00:00,怎么把这个去除。二、实现过程后来【论草莓如何成为冻干莓】给了一个思路和代码如下:pd.toexcel之前把这