深度学习基础 (包括前馈神经网络反向传播和卷积网络反向传播)
聊一聊深度学习(三天肝完深度学习基础,球球让我过吧!!)最近有场考试!!所以来过一遍深度学习,记录一些笔记备考看老师的ppt与花书,双管齐下应对深度学习(保佑我不挂吧!!)废话结束!引言人工智能领域的流派1.符号主义:逻辑主义,心理学派(推理期,心理期)2.连接主义:仿生学派或生理学派(殊途同归,各有所长)机器学
MLtech MLtech
4年前
图神经网络(Graph Neural Networks)概述
论文:AComprehensiveSurveyonGraphNeuralNetworks一篇关于图神经网络的综述文章,着重介绍了图卷积神经网络(GCN),回顾了近些年的几个主要的图神经网络的的体系:图注意力网络、图自编码机、图生成网络、图时空网络。1、介绍传统的机器学习所用到的数据是欧氏空间(Euclidea
Stella981 Stella981
3年前
Google研究人员推出了一种用于生成文本到图像的新框架(TReCS)
!(https://oscimg.oschina.net/oscnet/faedcb264a1c43969f2f5a2e6b9dbd2e.png)基于生成对抗网络(GAN)的深度神经网络促进了端到端可训练的照片级逼真的文本到图像的生成。许多方法还使用中间场景图表示法来改善图像合成。使用基于对话的交互的方法允许用户提供指令,以逐步改进和调整生成
Stella981 Stella981
3年前
Python数据科学:神经网络
!(https://oscimg.oschina.net/oscnet/859b832e38d7434f89d4122fe403005d.gif)(ArtificialNeuralNetwork,ANN)人工神经网络模型,以数学和物理的方法对人脑神经网络进行简化、抽象和模拟。本次只是一个简单的神经网络入门,涉及神经元模
使用深度学习进行图像分类
解决任何真实问题的重要一步是获取数据。Kaggle提供了大量不同数据科学问题的竞赛。我们将挑选一个2014年提出的问题,然后使用这个问题测试本章的深度学习算法,并在第5章中进行改进,我们将基于卷积神经网络(CNN)和一些可以使用的高级技术来改善图像识别模型的性能。大家可以从https://www.kaggle.com/c/dogsvscats/data下载数
胡赤儿 胡赤儿
1年前
人工智能换声技术:突破声音界限的奇迹
在当今数字化时代,人工智能(AI)技术的发展已经带来了许多惊人的创新,其中之一便是声音合成技术的飞速发展。AI换声技术是指利用深度学习和神经网络等先进技术,使计算机能够模仿、修改或生成人类的声音。这项技术不仅令人惊叹,而且在各个领域都有着广泛的应用,从娱乐
生成对抗网络GAN简介
生成对抗网络(GenerativeAdversarialNetworks,GAN)是一种深度敏感词模型,用于生成具有高度逼真度的新数据,如图像、音频、文本等。GAN是由IanGoodfellow等人在2014年提出的,其核心思想是通过两个神经网络,即生成器和判别器,相互竞争和协作来实现数据生成的目的。GAN的基本框架和训练过程如下图所示: