红橙Darren 红橙Darren
4年前
C进阶 - 内存四驱模型
一.内存四驱模型不知我们是否有读过《深入理解java虚拟机》这本书,强烈推荐读一下。在java中我们将运行时数据,分为五个区域分别是:程序计数器,java虚拟机栈,本地方法栈,java堆,方法区。在c/c中我们将运行时数据,分为四个区域分别是:栈区,堆区,数据区,代码区。我们详细来介绍下:1.栈区:由编译器自动分配释放,存放函数的
Python进阶者 Python进阶者
3年前
终于有人将MySQL的安装讲明白了
前言在日常开发中,存储数据的最常用的方式便是数据库了,其中最为著名的便是MySQL数据库,因它简便易于上手而且可扩展性强大,跨平台使得它广为使用,今天我们就来具体聊聊它的安装。一、安装过程我们所使用的是MySQL5.7版本,这个版本算是挺不错的。下面我们来介绍下这个版本的具体安装过程吧。1.解压安装因为官网目前下载不了,为了大家安装过程中方便,我们下载
Stella981 Stella981
3年前
Mac安装Redis可视化工具
Redis是一个超精简的基于内存的键值对数据库(keyvalue),一般对并发有一定要求的应用都用其储存session,乃至整个数据库。不过它公自带一个最小化的命令行式的数据库管理工具,有时侯使用起来并不方便。不过Github上面已经有了很多图形化的管理工具,而且都针对REDIS做了一些优化,如自动折叠带schema的key等。RedisDesk
Easter79 Easter79
3年前
Springboot2.x + ShardingSphere 实现分库分表
之前一篇文章中我们讲了基于Mysql8的读写分离(文末有链接),这次来说说分库分表的实现过程。概念解析垂直分片按照业务拆分的方式称为垂直分片,又称为纵向拆分,它的核心理念是专库专用。在拆分之前,一个数据库由多个数据表构成,每个表对应着不同的业务。而拆分之后,则是按照业务将表进行归类,分布到不同的数据库中,从而将压力分散至不同的
Wesley13 Wesley13
3年前
MySQL主备模式的数据一致性解决方案
根据阿里交易型业务的特点,以及在双十一这样业内罕有的需求推动下,我们在官方的MySQL基础上增加了非常多实用的功能、性能补丁。而在使用MySQL的过程中,数据一致性是绕不开的话题之一。本文主要从阿里巴巴“去IOE”的后时代讲起,向大家简单介绍下我们过去几年在MySQL数据一致性上的努力和实践,以及目前的解决方案。一.MySQL单机的数据一致性
Wesley13 Wesley13
3年前
APP可视化埋点原理大揭秘
一、背景运营者能够对用户行为进行分析的前提,是对大量数据的掌握。在以往,这个数据通常是由开发者在控件点击、页面等事件中,一行行地编写埋点代码来完成数据收集的。然而传统的操作模式每当升级改版时,开发和测试人员就需要重复不断对代码进行更新,整个流程耗时长,无法满足业务的需求。为帮助开发者解决这一痛点,个推应用统计“个数”推出“可视化埋点”这一技术
Easter79 Easter79
3年前
TcaplusDB 10周年 风雨兼程破浪行 自研存储见成长
从找不到需求险些被叫停,到支撑亿级DAU的数据库行业标杆,腾讯云数据库TcaplusDB在风雨中走过了整整10年。辉映日月破风浪,十年一剑破九天。百万行代码就像淙淙流淌的数据溪流,终于在十年后汇成不可逾越的护城河。出发2010年前后,QQ空间很火,带动了基于SNS互动页游(WebSNS)的火爆,腾讯内部开始考虑怎么做页游。也开始建设页游基础技术
Stella981 Stella981
3年前
SpringBoot 2,用200行代码完成一个一二级分布式缓存
缓存系统的用来代替直接访问数据库,用来提升系统性能,减小数据库负载。早期缓存跟系统在一个虚拟机里,这样内存访问,速度最快。后来应用系统水平扩展,缓存作为一个独立系统存在,如redis,但是每次从缓存获取数据,都还是要通过网络访问才能获取,效率相对于早先从内存里获取,还是不够逆天快。如果一个应用,比如传统的企业应用,一次页面显示,要访问数次redis,那效果
递归神经网络(RNN)
递归神经网络(RNN)RNN是最强大的模型之一,它使我们能够开发如分类、序列数据标注、生成文本序列(例如预测下一输入词的SwiftKeykeyboard应用程序),以及将一个序列转换为另一个序列(比如从法语翻译成英语的语言翻译)等应用程序。大多数模型架构(如前馈神经网络)都没有利用数据的序列特性。例如,我们需要数据呈现出向量中每个样例的特征,如表示句子、段
递归神经网络(RNN)
递归神经网络(RNN)RNN是最强大的模型之一,它使我们能够开发如分类、序列数据标注、生成文本序列(例如预测下一输入词的SwiftKeykeyboard应用程序),以及将一个序列转换为另一个序列(比如从法语翻译成英语的语言翻译)等应用程序。大多数模型架构(如前馈神经网络)都没有利用数据的序列特性。例如,我们需要数据呈现出向量中每个样例的特征,如表示句子、段