推荐
专栏
教程
课程
飞鹅
本次共找到1168条
协同过滤算法
相关的信息
helloworld_75860873
•
2年前
机智云选择了纺织、养殖、纸包装行业深耕
中国水产养殖产能占全球总量的50%以上,但实际上水产养殖生产环境非常落后,新的技术能力可以让这个万亿产业快速进入农业4.0时代。比如吉之云利用技术在传统的送料机上增加了高清摄像头。广角比人眼更能有效观察整个鱼塘的鱼情。通过算法优化,可以实现每天多次自动投喂,减少水源污染和饲料浪费,最终显著增加鱼产量。智云有一个智能养殖机器人,看起来像个盒子,但是内置了低功耗
Stella981
•
3年前
GitHub Trending第一之后,PaddleOCR再发大招:百度自研顶会SOTA算法正式开源!
要说生活里最常见、最便民的AI应用技术,OCR(OpticalCharacterRecognition,光学字符识别)当属其中之一。寻常到日常办理各种业务时的身份证识别,前沿到自动驾驶车辆的路牌识别,都少不了它的加持。作为一名开发者,各种OCR相关的需求自然也少不了:卡证识别、票据识别、汽车场景、教育场景文字识别……!(https://imgco
Wesley13
•
3年前
2018年全国多校算法寒假训练营练习比赛(第一场)G 圆圈
链接:https://www.nowcoder.com/acm/contest/67/G(https://www.oschina.net/action/GoToLink?urlhttps%3A%2F%2Fwww.nowcoder.com%2Facm%2Fcontest%2F67%2FG)来源:牛客网时间限制:C/C1秒,其他语
可莉
•
3年前
2021最新「阿里」Java高级工程师面试高频题:JVM+Redis+并发+算法+框架
!é¿éçæé±(å¾çæ¥èªbaidu)(https://imgblog.csdnimg.cn/img_convert/75fe24d72f7cd925cd867a0af4dedbf4.png)
可莉
•
3年前
211毕业,2020最新字节后端三面面经分享,算法还是让我很为难
注:本场面试在疫情期间三月份拿到的字节offer基本条件本人是底层211本科,无科研经历,但是有一些项目经历,在国内监控行业某头部企业做过一段时间的实习。想着投一下字节,可以积累一下面试经验和为春招做准备.投了简历之后,过了一段时间,HR就打电话跟我约时间,在年后进行远程面。说明一下,我投的是北京office。
可莉
•
3年前
2018图灵奖Lecture:计算机体系结构的又一个黄金时代:特定领域的软硬件协同设计,增强安全,开源指令集和芯片的敏捷开发
按:上周日(6月3日),在加利福尼亚,2017年图灵奖获(2018年3月21日公布)得者Hennessy和Patterson做了图灵奖lecture:ANewGoldenAgeforComputerArchitecture:DomainSpecificHardware/SoftwareCoDesign,EnhancedSecuri
Stella981
•
3年前
2018图灵奖Lecture:计算机体系结构的又一个黄金时代:特定领域的软硬件协同设计,增强安全,开源指令集和芯片的敏捷开发
按:上周日(6月3日),在加利福尼亚,2017年图灵奖获(2018年3月21日公布)得者Hennessy和Patterson做了图灵奖lecture:ANewGoldenAgeforComputerArchitecture:DomainSpecificHardware/SoftwareCoDesign,EnhancedSecuri
个推技术实践
•
2年前
个推TechDay直播预告 | 8月24日晚19:30,实时数仓搭建保姆级教程开课!
当下,企业的实时计算需求越来越高频,很多企业和组织选择建设实时数据仓库,以敏捷支撑实时报表分析、智能算法推荐、系统风险预警等多元业务场景需求。相比离线数仓,实时数仓有哪些特性?如何进行实时数仓的技术选型?个推TechDay“治数训练营”系列直播课第二期来了!8月24日(下周三)晚上19:3020:30,个推资深数据研发工程师为您解读实时数仓架构演进,分享实时
helloworld_54277843
•
2年前
深入了解神经网络
深入了解神经网络本章将介绍用于解决实际问题的深度学习架构的不同模块。前一章使用PyTorch的低级操作构建了如网络架构、损失函数和优化器这些模块。本章将介绍用于解决真实问题的神经网络的一些重要组件,以及PyTorch如何通过提供大量高级函数来抽象出复杂度。本章还将介绍用于解决真实问题的算法,如回归、二分类、多类别分类等。本章将讨论如下主题:详解神经网络的不
helloworld_91538976
•
2年前
深入了解神经网络
深入了解神经网络本章将介绍用于解决实际问题的深度学习架构的不同模块。前一章使用PyTorch的低级操作构建了如网络架构、损失函数和优化器这些模块。本章将介绍用于解决真实问题的神经网络的一些重要组件,以及PyTorch如何通过提供大量高级函数来抽象出复杂度。本章还将介绍用于解决真实问题的算法,如回归、二分类、多类别分类等。本章将讨论如下主题:详解神经网络的不
1
•••
109
110
111
•••
117