大数据
课程安排 一、大数据概述 二、大数据处理架构Hadoop 三、分布式文件系统HDFS 四、分布式数据库HBase 五、MapReduce 六、Spark 七、IPythonNotebook运行PythonSpark程序 八、PythonSpark集成开发环境 九、PythonSpark决策树二分类与多分类 十、PythonSpark支持向量机 十一
Stella981 Stella981
3年前
Python算法之决策树利器——Graphviz
解密思想和方法,谁都会写程序!!(https://oscimg.oschina.net/oscnet/d138dbc753d10e682a48ce9b129284e088b.gif)!(https://oscimg.oschina.net/oscnet/466e1fdae130f31f5d9a1806e7e207907
Wesley13 Wesley13
3年前
MesaTEE GBDT
!(https://static.oschina.net/uploads/space/2020/0702/190947_Fixv_4501957.jpg)GBDT(GradientBoostingDecisionTree,梯度提升决策树)是工业界广泛应用的机器学习算法,而XGBoost则是著名华人学者陈天奇发起并被工业界广泛应用的开源GBDT工
Stella981 Stella981
3年前
LightGBM 算法原理
LightGBM的动机GBDT(GradientBoostingDecisionTree)是机器学习中一个长盛不衰的模型,其主要思想是利用弱分类器(决策树)迭代训练以得到最优模型,该模型具有训练效果好、不易过拟合等优点。GBDT在工业界应用广泛,通常被用于点击率预测,搜索排序等任务而GBDT在每一次迭代的时
Wesley13 Wesley13
3年前
KNN分类算法原理分析及代码实现
1、分类与聚类的概念与区别分类:是从一组已知的训练样本中发现分类模型,并且使用这个分类模型来预测待分类样本。目前常用的分类算法主要有:朴素贝叶斯分类算法(NaïveBayes)、支持向量机分类算法(SupportVectorMachines)、KNN最近邻算法(kNearestNeighbors)、神经网络算法(NNet)以及决策树(De
Stella981 Stella981
3年前
GPU上的随机森林:比Apache Spark快2000倍
作者|AaronRichter编译|VK来源|TowardsDataScience随机森林是一种机器学习算法,以其鲁棒性、准确性和可扩展性而受到许多数据科学家的信赖。该算法通过bootstrap聚合训练出多棵决策树,然后通过集成对输出进行预测。由于其集成特征的特点,随机森林是一种可以在分布式计算环境中实现的算法。树可以在集群中跨进程和机器并
Wesley13 Wesley13
3年前
巧用决策树消灭 if
前言最近公司在搞技术创新,老板把一群程序员拉到山上,锁在酒店会议室里憋了一晚总结出来几条意见,其中之一就是之所以每次产品改需求我们都会苦哈哈的加班写bug,主要不是因为产品今天提的需求,昨天就该上线,而是因为我们没有一种无需硬编码就能修改系统逻辑的方法。大家一致同意改变命运的关键在于开发一个可视化的规则编辑和执行引擎。我一听这不就是我N年前搞过的决
大数据——决策树(decision tree)
大数据————决策树(decisiontree)决策树(decisiontree):是一种基本的分类与回归方法,主要讨论分类的决策树。在分类问题中,表示基于特征对实例进行分类的过程,可以认为是ifthen的集合,也可以认为是定义在特征空间