由于最近有一个统计单位时间内某key的访问次数的需求,譬如每5秒访问了redis的某key超过100次,就取出该key单独处理。
这样的单位时间统计,很明显我们都知道有个边界问题,譬如5秒内100次的限制。刚好前4.99秒访问都是0,最后0.01秒来了100次,5.01秒又来了100次。也就是访问有明显的毛刺情况出现,为了弱化这个毛刺情况,我们可以采用滑动窗口。
滑动窗口
滑动窗口的主要原理比较简单,就是将这个单位时间进行拆分,譬如5秒的统计范围,我们将它划分成5个1秒。
当请求进来时,先判断当前请求属于这5个1秒的时间片中的哪个,然后将对应的时间片对应的统计值加1,再判断当前加上前4个时间片的次数总和是否已经超过了设置的阈值。
当时间已经到达第6个时间片时,就把第一个时间片给干掉,因为无论第一片是多少个统计值,它都不会再参与后续的计算了。
就这样,随着时间的推移,统计值就随着各个时间片的滚动,不断地进行统计。
具体要将单位时间拆分为多少片,要根据实际情况来决定。当然,毫无疑问的是切分的越小,毛刺现象也越少。系统统计也越准确,随之就是内存占用会越大,因为你的这个窗口的数组会更大。
代码实现思路就是定义好分片数量,每个分片都有一个独立的计数器,所有的分片合计为一个数组。当请求来时,按照分片规则,判断请求应该划分到哪个分片中去。要判断是否超过阈值,就将前N个统计值相加,对比定义的阈值即可。
代码我直接引用别人写好的了,源代码在https://www.iteye.com/blog/go12345-1744728
import java.util.concurrent.atomic.AtomicInteger;
/**
* 滑动窗口。该窗口同样的key,都是单线程计算。
*
* @author wuweifeng wrote on 2019-12-04.
*/
public class SlidingWindow {
/**
* 循环队列,就是装多个窗口用,该数量是windowSize的2倍
*/
private AtomicInteger[] timeSlices;
/**
* 队列的总长度
*/
private int timeSliceSize;
/**
* 每个时间片的时长,以毫秒为单位
*/
private int timeMillisPerSlice;
/**
* 共有多少个时间片(即窗口长度)
*/
private int windowSize;
/**
* 在一个完整窗口期内允许通过的最大阈值
*/
private int threshold;
/**
* 该滑窗的起始创建时间,也就是第一个数据
*/
private long beginTimestamp;
/**
* 最后一个数据的时间戳
*/
private long lastAddTimestamp;
public static void main(String[] args) {
//1秒一个时间片,窗口共5个
SlidingWindow window = new SlidingWindow(100, 4, 8);
for (int i = 0; i < 100; i++) {
System.out.println(window.addCount(2));
window.print();
System.out.println("--------------------------");
try {
Thread.sleep(102);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
public SlidingWindow(int duration, int threshold) {
//超过10分钟的按10分钟
if (duration > 600) {
duration = 600;
}
//要求5秒内探测出来的,
if (duration <= 5) {
this.windowSize = 5;
this.timeMillisPerSlice = duration * 200;
} else {
this.windowSize = 10;
this.timeMillisPerSlice = duration * 100;
}
this.threshold = threshold;
// 保证存储在至少两个window
this.timeSliceSize = windowSize * 2;
reset();
}
public SlidingWindow(int timeMillisPerSlice, int windowSize, int threshold) {
this.timeMillisPerSlice = timeMillisPerSlice;
this.windowSize = windowSize;
this.threshold = threshold;
// 保证存储在至少两个window
this.timeSliceSize = windowSize * 2;
reset();
}
/**
* 初始化
*/
private void reset() {
beginTimestamp = SystemClock.now();
//窗口个数
AtomicInteger[] localTimeSlices = new AtomicInteger[timeSliceSize];
for (int i = 0; i < timeSliceSize; i++) {
localTimeSlices[i] = new AtomicInteger(0);
}
timeSlices = localTimeSlices;
}
private void print() {
for (AtomicInteger integer : timeSlices) {
System.out.print(integer + "-");
}
}
/**
* 计算当前所在的时间片的位置
*/
private int locationIndex() {
long now = SystemClock.now();
//如果当前的key已经超出一整个时间片了,那么就直接初始化就行了,不用去计算了
if (now - lastAddTimestamp > timeMillisPerSlice * windowSize) {
reset();
}
return (int) (((now - beginTimestamp) / timeMillisPerSlice) % timeSliceSize);
}
/**
* 增加count个数量
*/
public boolean addCount(int count) {
//当前自己所在的位置,是哪个小时间窗
int index = locationIndex();
// System.out.println("index:" + index);
//然后清空自己前面windowSize到2*windowSize之间的数据格的数据
//譬如1秒分4个窗口,那么数组共计8个窗口
//当前index为5时,就清空6、7、8、1。然后把2、3、4、5的加起来就是该窗口内的总和
clearFromIndex(index);
int sum = 0;
// 在当前时间片里继续+1
sum += timeSlices[index].addAndGet(count);
//加上前面几个时间片
for (int i = 1; i < windowSize; i++) {
sum += timeSlices[(index - i + timeSliceSize) % timeSliceSize].get();
}
System.out.println(sum + "---" + threshold);
lastAddTimestamp = SystemClock.now();
return sum >= threshold;
}
private void clearFromIndex(int index) {
for (int i = 1; i <= windowSize; i++) {
int j = index + i;
if (j >= windowSize * 2) {
j -= windowSize * 2;
}
timeSlices[j].set(0);
}
}
}
import java.util.concurrent.Executors;
import java.util.concurrent.ScheduledExecutorService;
import java.util.concurrent.ThreadFactory;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicLong;
/**
* 用于解决高并发下System.currentTimeMillis卡顿
* @author lry
*/
public class SystemClock {
private final int period;
private final AtomicLong now;
private static class InstanceHolder {
private static final SystemClock INSTANCE = new SystemClock(1);
}
private SystemClock(int period) {
this.period = period;
this.now = new AtomicLong(System.currentTimeMillis());
scheduleClockUpdating();
}
private static SystemClock instance() {
return InstanceHolder.INSTANCE;
}
private void scheduleClockUpdating() {
ScheduledExecutorService scheduler = Executors.newSingleThreadScheduledExecutor(new ThreadFactory() {
@Override
public Thread newThread(Runnable runnable) {
Thread thread = new Thread(runnable, "System Clock");
thread.setDaemon(true);
return thread;
}
});
scheduler.scheduleAtFixedRate(() -> now.set(System.currentTimeMillis()), period, period, TimeUnit.MILLISECONDS);
}
private long currentTimeMillis() {
return now.get();
}
/**
* 用来替换原来的System.currentTimeMillis()
*/
public static long now() {
return instance().currentTimeMillis();
}
}
参照代码main方法,通过修改每个时间片的时间,窗口数量,阈值,来进行测试。
这就是简单实现了。