4次优化,我把 Redis 性能 “压榨” 到极致!

Wesley13
• 阅读 632

本文转载自公众号

https://mp.weixin.qq.com/s/y4q4Hb9A6xay3pAC_LBm5g

我们有个这样的需求:每天每一个抢购商品只能买一次,并且全场抢购商品总购买次数不允许超过5次。

那么,整个商品限购的流程大概如下图所示:4次优化,我把 Redis 性能 “压榨” 到极致!

那么,在每次购买成功商品成功后,发送的MQ大概是这样的(假设当前这笔订单有两件抢购商品):

4次优化,我把 Redis 性能 “压榨” 到极致!

这条消息表示860000000000001这个用户在1581001673012这个时间点(北京时间为2020/02/06 23:07:53)在A045这个商户分别购买了商品ID为599055114591和599055114592两样商品。

那么,当消费这条信息后,更新频控的几条关键Redis命令如下(上面的需求不是重点,优化下面5条命令才是本文的重点):

4次优化,我把 Redis 性能 “压榨” 到极致!

我们首先了解一下执行一条Redis命令耗时由哪几部分组成:

发送命令网络传输时间,命令在Redis服务端队列中等待的时间,命令执行的时间(Redis中的slowlog只是检测这一步骤的时间),结果返回的Redis客户端的时间。

如下图所示:

4次优化,我把 Redis 性能 “压榨” 到极致!

上面的业务总计涉及5条Redis命令,每条命令都需要经过这些步骤,可想而知性能真的弱爆了(可能整个执行过程还不需要10ms,但还是弱爆了)。

  • 第1次优化

第一次优化非常简单,稍微有点经验就能看出来,利用hmset命令将两条hmset命令合二为一,优化后的Redis命令如下:

4次优化,我把 Redis 性能 “压榨” 到极致!

  • 第2次优化

第二次优化将set和expire命令合二为一,这个一般对Redis有点了解的也知道如何优化:

4次优化,我把 Redis 性能 “压榨” 到极致!

  • 第3次优化

第3次优化需要借助pipeline,简直就是Redis优化的一大杀器。

不过,需要注意的是在RedisCluster中使用pipeline时必须满足pipeline打包的所有命令key在RedisCluster的同一个slot上

如果打包命令的key不在同一个slot上,就会报错。所以我们需要分两批打包:

4次优化,我把 Redis 性能 “压榨” 到极致!

经过第3次的优化后,这些命令还是需要2次网络交互。较劲的我还是不甘心,想要将其优化到只需要一次网络交互即可,有没有办法?

当然有!

  • 第4次优化

这次优化利用了一个高级特性:hashtag

是啥子意思呢?我们知道,RedisCluster总计有16*1024=16384个slot。那么执行一条Redis命令时,其key对应的是哪个slot呢?是利用这样一个计算公式得到的:slot = CRC16(key)%16384

示意图如下:

4次优化,我把 Redis 性能 “压榨” 到极致!

也就是说,默认情况下,key在哪个slot上,与key有关。那么,我们能否只让key在哪个slot上与部分key有关呢?

当然可以,这就是hashtag特性。用法非常简单,假设一个key是mall:sale:freq:ctrl:860000000000001,我们只需要用{}将key中我们需要的那部分包括起来即可。

例如,我们只想让其根据用户IMEI计算即可,那么key是这样的:mall:sale:freq:ctrl:{860000000000001}。只要key中有{860000000000001}这一部分,就一定落在同一个slot上。

所以,第四次优化以后的命令执行如下所示:

4次优化,我把 Redis 性能 “压榨” 到极致!

4次优化,我把 Redis 性能 “压榨” 到极致!

优化后,5条Redis命令压缩到3条Redis命令,并且3条Redis命令只需要发送一次,并且结果也一次就能全部返回。简直完美!

  • 注意事项

我们在使用hashtag特性时,一定要注意,不能把key的离散性变得非常差

以本文为例,没有利用hashtag特性之前,key是这样的:mall:sale:freq:ctrl:860000000000001,很明显这种key由于与用户相关,所以离散性非常好。

而使用hashtag以后,key是这样的:mall:sale:freq:ctrl:{860000000000001},这种key还是与用户相关,所以离散性依然非常好。

我们千万不要这样来使用hashtag特性,例如将key设置为:mall:{sale:freq:ctrl}:860000000000001。

这样的话,无论有多少个用户多少个key,其{}中的内容完全一样都是sale:freq:ctrl,也就是说,所有的key都会落在同一个slot上,导致整个Redis集群出现严重的倾斜问题。

点赞
收藏
评论区
推荐文章
blmius blmius
3年前
MySQL:[Err] 1292 - Incorrect datetime value: ‘0000-00-00 00:00:00‘ for column ‘CREATE_TIME‘ at row 1
文章目录问题用navicat导入数据时,报错:原因这是因为当前的MySQL不支持datetime为0的情况。解决修改sql\mode:sql\mode:SQLMode定义了MySQL应支持的SQL语法、数据校验等,这样可以更容易地在不同的环境中使用MySQL。全局s
皕杰报表之UUID
​在我们用皕杰报表工具设计填报报表时,如何在新增行里自动增加id呢?能新增整数排序id吗?目前可以在新增行里自动增加id,但只能用uuid函数增加UUID编码,不能新增整数排序id。uuid函数说明:获取一个UUID,可以在填报表中用来创建数据ID语法:uuid()或uuid(sep)参数说明:sep布尔值,生成的uuid中是否包含分隔符'',缺省为
待兔 待兔
4个月前
手写Java HashMap源码
HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程22
Stella981 Stella981
3年前
Opencv中Mat矩阵相乘——点乘、dot、mul运算详解
Opencv中Mat矩阵相乘——点乘、dot、mul运算详解2016年09月02日00:00:36 \牧野(https://www.oschina.net/action/GoToLink?urlhttps%3A%2F%2Fme.csdn.net%2Fdcrmg) 阅读数:59593
Stella981 Stella981
3年前
KVM调整cpu和内存
一.修改kvm虚拟机的配置1、virsheditcentos7找到“memory”和“vcpu”标签,将<namecentos7</name<uuid2220a6d1a36a4fbb8523e078b3dfe795</uuid
Easter79 Easter79
3年前
Twitter的分布式自增ID算法snowflake (Java版)
概述分布式系统中,有一些需要使用全局唯一ID的场景,这种时候为了防止ID冲突可以使用36位的UUID,但是UUID有一些缺点,首先他相对比较长,另外UUID一般是无序的。有些时候我们希望能使用一种简单一些的ID,并且希望ID能够按照时间有序生成。而twitter的snowflake解决了这种需求,最初Twitter把存储系统从MySQL迁移
Stella981 Stella981
3年前
Android蓝牙连接汽车OBD设备
//设备连接public class BluetoothConnect implements Runnable {    private static final UUID CONNECT_UUID  UUID.fromString("0000110100001000800000805F9B34FB");
Stella981 Stella981
3年前
Flink SQL Window源码全解析
!(https://oscimg.oschina.net/oscnet/72793fbade36fc18d649681ebaeee4cdf00.jpg)(https://www.oschina.net/action/GoToLink?urlhttps%3A%2F%2Fmp.weixin.qq.com%2Fs%3F__biz%3DMzU3MzgwNT
Wesley13 Wesley13
3年前
MySQL部分从库上面因为大量的临时表tmp_table造成慢查询
背景描述Time:20190124T00:08:14.70572408:00User@Host:@Id:Schema:sentrymetaLast_errno:0Killed:0Query_time:0.315758Lock_
Python进阶者 Python进阶者
10个月前
Excel中这日期老是出来00:00:00,怎么用Pandas把这个去除
大家好,我是皮皮。一、前言前几天在Python白银交流群【上海新年人】问了一个Pandas数据筛选的问题。问题如下:这日期老是出来00:00:00,怎么把这个去除。二、实现过程后来【论草莓如何成为冻干莓】给了一个思路和代码如下:pd.toexcel之前把这