供应链大屏设计实践

京东云开发者
• 阅读 225

概述

在物流系统相关的大屏中,供应链大屏复杂度较高,数据链路较长,稳定性要求较高,当前大屏已经经过2年时间的打磨,整体表现已经相对比较成熟稳定。

本文描述了物流供应链业务较复杂的业务场景下,结合了大数据计算相关技术,总结了实时监控大屏指标建设和服务构建的框架和经验,为后续其他核心大屏的高可用和高实时性建设提供建设思路。以下几点需要重点关注:

1、基于Flink的数据加工链路和OLAP的数据分析引擎

基于目前较为成熟的实时计算Flink,结合ClickHouse搭建基础模型,借助双流和EasyData实现一键切换。

2、指标的一致性

加工和展示分离,可基于单仓原子指标进行区域和品类上卷,既保障了指标的维度一致性(单仓-区域-全国),又保障了同一个数据版本的时间一致性。

同时借助缓存库/表,来满足不同的业务场景。

3、稳定性建设

•数据链路的稳定性

•接口服务的兜底

•指标准确性的验证机制

•重算机制

本文内容有限,很多设计的小细节未能体现,感兴趣的可随时与我交流,希望上述内容对正在从事大屏建设的同学有一些新的启发和思考。

一、背景

供应链大屏是供应链事业部重要的看数工具,尤其在大促期间,为业务管理层掌握大促实时动态提供了支撑,为事业部的目标达成、排产提供重要的数据支持。

特点:

•指标较多,170+;

•刷新频率,1分钟;

•数据来源较多,大件、逆向、冷链、服务+、Udata、离线等;

•链路长:10+个计算传输节点

•重要性高,稳定性要求高,准确性要求高;

二、方案

2.1 数据模型存储选型

供应链大屏涉及模型较多,消息量较大,对写入性能和查询性能要求较高,主要基于Elasticsearch和ClickHouse进行对比选型,对比项如下:

比较项 Elasticsearch ClickHouse
实现原理 基于Lucene的分布式搜索引擎,ES通过分布式技术,利用分片与副本机制,解决了集群下搜索性能与高可用的问题。 基于MPP(Massively Parallel Processing)架构的分布式ROLAP(关系OLAP)分析引擎,拥有完备的管理功能,是列式数据库管理系统(DBMS)。通过使用日志合并树,稀疏索引和向量化执行引擎(CPU的SIMD单指令多数据)充分发挥了硬件优势,实现高效的计算。
写入性能 中等,有写入延迟问题 较高,吞吐量大,经测试是ES的5倍以上
查询性能 中等 高,经测试查询速度比ES快5-30倍以上
多表联合查询 不支持 支持
服务器成本 相同数据占用的磁盘空间只有ES的1/3到1/30,节省了磁盘空间的同时,也能有效的减少磁盘IO;另一方面ClickHouse比ES占用更少的内存,消耗更少的CPU资源
SQL查询 不支持 支持
高并发支持 较好,经过优化可以支持上万QPS 官方建议qps为100
全文检索 支持 不支持

由上面的比较可以看出,作为OLAP数据库,CH的写入,查询性能都优于ES,但是唯一的问题是高并发支持问题。所以对于不需要高并发和全文检索的场景,选择CH是更合适的。针对某些需要高并发的场景,可以选择ES,或者CH+缓存层实现。



2.2 整体架构



供应链大屏设计实践





由于数据来源多、复杂度高,为了提升指标服务的稳定性,降低代码复杂度提升可维护性,提升指标的复用性,整体架构分5层,包括模型加工层、数据处理层、单仓指标加工层、区域指标加工层和展示层。各层的职责如上图所示。

2.3 指标分层及一致性设计



供应链大屏设计实践



以仓订单相关指标为例,所有指标加工保持1套逻辑,同一主任务触发,加工完成之后,基于单仓指标上卷加工区域等更高维度的指标,保证指标数据的一致性。

针对不同的业务报表,根据不同的场景,进行指标查询,通过指标缓存表的方式,减少数据量,提升指标的查询性能。



2.4 稳定性设计

由于数据链路长,稳定性较差,问题主要集中在Flink、CH环节,恢复周期长。对于大屏等核心任务,数据的实时性和准确性要求较高,以下是历史发生过的问题:

•CK分区太多,写入阻塞

•CK rename操作,节点太多,表结构同步慢,导致写入报错,大量消息积压,丢消息

•Flink机房网络故障

•flink 偶发丢消息,未定位到原因

•checkpoint失败

•jdq分片不均,单个分区消息增加400倍,消息积压

•维表数据未更新,导致丢失字段

•上游运单模型积压,丢失部分字段

•数据积压

•加工逻辑复杂,偶发乱序问题

•state未保存,丢数据

•CK跨分区字段查询明细,性能较低

•代码编写使用了Flink序列化未支持的格式、循环过多,导致算子背压严重

•逻辑复杂,上线风险高且回滚困难



供应链大屏设计实践



从整个链路中,针对易出问题的flink-CK链路进行双流,物理隔离,遇到问题可一键切换至备流。







2.5 扩展性设计

基于UCC配置,通过配置灵活适配业务诉求,节约开发成本,方便定位问题和恢复;

包括4H/24H/28H、同环比日期配置、预测日期配置、单仓兜底配置、展示配置等;

(1)28小时模式配置化:可通过配置将任意一天切换为28小时、4小时模式,为业务和研发侧提供了充分的线上验证机会;

(2)阈值开关配置化:可通过阈值开关进行数据兜底逻辑管控,确保数据平稳;

(3)自动刷新白名单配置化:灵活配置大屏自动刷新白名单,支持封版期间人员白名单权限控制;

(4)历史日期配置化:计算预测全天指标使用指定历史日期的单量占比作为对比项,数据库里包含部分历史大促日单量数据,可灵活配置修改对比的历史日期;

(5)重算机制:可基于某一时间段进行数据重算。



参数配置:



{
  "thresholdEnable": "false", //大促预测上下线是否开启,开启后upperLimit与lowerLimit生效,
  "upperLimit": "1.6d", //上限
  "lowerLimit": "0.6d", //下限
  "zyShowFlag": true, //中小件产品维度-自营是否展示开关
  "swShowFlag": true,  //中小件产品维度-商务是否展示开关
  "jjShowFlag": true,  //中小件产品维度-经济是否展示开关
  "wdShowFlag": true, //中小件产品维度-外单是否展示开关
  "todayTradeCleanRateShowFlag": true, //今日交易清理率展示开关
  "promotionTradeCleanRateShowFlag": true,//大促交易清理率展示开关
  "isDebug": true, //是否debug,目前还没使用
  "isCacheOn": true, //是否打开缓存,默认开
  "isWriteMinuteAndHour": true, //是否双写分钟表和小时表,代表是否写 wms_order_analysis_report_minute_2023 和 wms_order_analysis_report_hour_2023
  "isMinuteWrite": true, //是否写分钟表wms_order_analysis_report_minute_2023 开关
  "isHourWrite": true, //是否写wms_order_analysis_report_hour_2023 开关
  "isMinuteNotice": false, //是否分钟表写完发mq
  "isHourNotice": false,//是否小时表写完发咚咚推送mq
 }



对比策略配置:

{
    "sTime": "2023-06-17 00:00:00", // 大屏策略时间开始
    "eTime": "2023-06-17 19:59:59", // 大屏策略时间结束
    "tbSTime": "2022-06-17 00:00:00", //同比开始
    "tbETime": "2022-06-17 19:59:59",//同比结束
    "hbSTime": "2022-11-10 00:00:00",//环比开始
    "hbETime": "2022-11-10 19:59:59",//环比结束
    "showType": "24h",//类型,24h同20h小时,都可以
    "special24hCompDateStr": "2022-06-17",//大促24h特殊对比日期,(4h,28h不使用) 主要影响预测;主要用作非 4h/28h 的预测不使用昨日了;
    "specialCompDateStr": ""       //大促4h/28h预测对比天数
}

2.6 数据监控

多种验证及监控手段组合保证数据准确性

1)前端自动化模型,定时截取每个大屏关键节点截图。

2)自动化抓包,分钟级记录接口调用情况,结合定时截图,便用问题排查及定位。

3)大屏结果分钟级落库,并通过Grafana,创建大屏数据监控看板,持续监控大屏数据,通过异常拐点发现问题点,避免遗漏问题。并结合不同看板分析数据趋势及变化原因。

4)结合大屏计算逻辑,通过京东动力搭建测试模型,做到自由指定时间计算大屏指标明细,验证分析大屏数据。

点赞
收藏
评论区
推荐文章
Stella981 Stella981
3年前
Hologres+Flink流批一体首次落地4982亿背后的营销分析大屏
简介: 本篇将重点介绍Hologres在阿里巴巴淘宝营销活动分析场景的最佳实践,揭秘FlinkHologres流批一体首次落地阿里双11营销分析大屏背后的技术考验。_概要:刚刚结束的2020天猫双11中,MaxCompute交互式分析(下称Hologres)实时计算Flink搭建的云原生实时数仓首次在核心数据场景落地,为大数据平台创下一项新纪
Wesley13 Wesley13
3年前
11.11数据可视化大屏设计揭秘
以下文章来源于DesignwithCloudAI ,作者JoannidesignDesignwithCloudAI京东智联云用户体验设计团队服务于Cloud&AI涉及UEDesign、BrandDesign、UEResearch、IDDesign等相关领域。坚持以客户(用户)为中心的产品设计理念,努力成为京东云与AI最好的合作伙伴
Stella981 Stella981
3年前
Qt编写自定义控件16
前言五一期间一直忙着大屏电子看板软件的开发,没有再去整理控件,今天已经将大屏电子看板的所有子窗口都实现了任意停靠和双击独立再次双击最大化等功能,过阵子有空再写一篇文章介绍其中的技术点。魔法老鼠控件,来自Qt自带的demo,我只是将其修改了部分颜色接口等。实现的功能1:可设置身体眼睛眼珠鼻子尾巴的颜色2:
库存预占架构升级方案设计-交易库存中心 | 京东物流技术团队
伴随物流行业的迅猛发展,一体化供应链模式的落地,对系统吞吐、系统稳定发出巨大挑战,库存作为供应链的重中之重表现更为明显
万界星空科技 万界星空科技
10个月前
万界星空科技可视化数据大屏的作用
​随着科技的不断发展和进步,当前各种数据化的设备也是如同雨后春笋般冒了出来,并且其可以说是给我们带来了极大的便利的。在这其中,数据大屏就是非常具有代表性的一个例子。​数据大屏的主要作用包括:数据分析:数据大屏能够将大量数据以图表、表格等多种形式展示,帮助人
万界星空科技 万界星空科技
8个月前
商业开源MES+源码+送可拖拽式数据大屏
商业开源MES源码送可拖拽式数据大屏开发学习的好机会
京东云开发者 京东云开发者
1个月前
简述大前端技术栈的渲染原理
作者:京东物流卢旭大前端包括哪些技术栈大前端指的是涵盖所有与前端开发相关的技术和平台,应用于各类设备和操作系统上。大前端不仅包括Web开发,还包括移动端开发和跨平台应用开发,具体包括:•原生应用开发:Android、iOS、鸿蒙(HarmonyOS)等;•
京东云开发者 京东云开发者
4星期前
大模型在软件测试中的应用论讨
作者:京东物流张媛1、大模型的概念大模型是指具有大规模参数和复杂计算结构的机器学习模型。这些模型通常由深度神经网络构建而成,拥有数十亿甚至数千亿个参数。大模型的设计目的是为了提高模型的表达能力和预测性能,能够处理更加复杂的任务和数据。大模型在各种领域都有广
欣喜若狂 欣喜若狂
1年前
皕杰报表+DataEase,中式复杂报表与数据可视化的完美组合
在商业智能解决方案中,数据的展现及业务规律的呈现是商业智能中极其重要的组成部分。长久以来,由于数据源复杂多样性,以及中国传统文化的对于数据表格的工整、对称等等的影响下,报表工具一直担当着商业智能的数据展现中主角的位置;最近随着显示屏技术的发展、大屏价格的下
大数据实时链路备战——数据双流高保真压测 | 京东云技术团队
大数据时代,越来越多的业务依赖实时数据用于决策,比如促销调整,点击率预估、广告分佣等。为了保障业务的顺利开展,也为了保证整体大数据链路的高可用性,越来越多的0级系统建设双流,以保证日常及大促期间数据流的稳定性。