京东广告生成式召回基于 NVIDIA TensorRT-LLM 的推理加速实践

京东云开发者
• 阅读 25

作者:京东零售 陈航

0000 生成式推荐系统优势介绍

推荐系统的主要任务是根据用户的历史行为预测其兴趣点,并向其推荐相应的商品。传统的推荐系统在处理用户请求时,会触发多个召回模块(包括热门商品召回、个性化召回、深度召回等),以召回大量候选商品。随后,系统通过相对简单的粗排模型对候选集进行初步筛选,缩小候选范围,最后通过精排和重排模型,确定最终返回给用户的推荐结果。

随着大语言模型(LLM)在推荐系统中的应用,生成式推荐系统相比传统推荐系统展现出以下优势:

1)简化推荐流程:生成式推荐系统实现了从多级过滤的判别式(discriminative-based)架构向单级过滤的生成式(generative-based)架构的转变。通过直接生成推荐结果,简化了推荐流程,降低了系统复杂度。

2)知识融合:LLM 具有更强的泛化能力和稳定性。利用 LLM 所包含的世界知识和推理能力,可以突破传统电子商务平台在商品和用户建模中存在的数据局限性。在新用户和新商品的冷启动以及新领域的推荐场景中,生成式推荐系统能够提供更优的推荐效果和更好的迁移性能。

3)规模定律 (Scaling Law):传统的点击率(CTR)稀疏模型在模型规模扩大时,边际收益递减现象明显。而 LLM 所表现出的规模定律属性,为模型的有效扩展提供了一种新模式,即模型性能随着规模的增加而持续提升。这意味着通过扩大模型规模,可以获得更好的推荐效果,突破传统模型的性能瓶颈。

京东广告生成式召回基于 NVIDIA TensorRT-LLM 的推理加速实践



图 1: 传统推荐系统与基于 LLM 的生成式推荐系统对比(图片来源于 https://arxiv.org/pdf/2309.01157)

下面以京东广告场景落地生成式召回为例,介绍大语言模型在推荐系统的应用。



0001 生成式召回方案介绍

1、生成式召回算法与实现简介

生成式推荐涉及两个接地(grounding)过程:一是建立商品与自然语言的连接。二是建立用户行为与目标商品之间的连接。为实现这两个过程,我们需要以下几步:

1)商品表示:在实际操作中,直接生成文档或商品描述几乎是不可行的。因此,我们采用短文本序列,即语义 ID,来表征商品。选取高点击商品的标题、类目等语义信息,经由编码器模型获得向量表示,再利用 RQ-VAE 对向量进行残差量化,从而获得商品的语义 ID。例如,商品:“XXX品牌 14+ 2024 14.5 英寸轻薄本 AI 全能本高性能独显商务办公笔记本电脑” 可表示为:<a_99><b_225><c_67><d_242>。

2)用户画像&行为建模:通过构建提示词来定义任务,并将用户相关信息(例如用户画像和用户历史行为数据)转化为文本序列。例如:“用户按时间顺序点击过这些商品:<a_112><b_160><c_67><d_138>,<a_71><b_30><c_228><d_128>, <a_20><b_251><c_30><d_178> 你预测用户下一个可能点击的商品是? ”。

3)模型训练:确定了生成模型的输入(用户表示)和输出(商品物料标识符),即可基于生成式 Next Token Prediction 任务进行模型训练。

4)模型推理:经过训练后,生成模型能够接收用户信息并预测相应的商品语义 ID,这些语义标识可以对应数据集中的实际商品 ID。

(了解详细算法方案请参考: 生成式推荐系统与京东联盟广告-综述与应用 )

2、LLM 模型部署的工程适配

传统基于深度学习的召回模型,其参数量通常在几十万到几千万之间,且模型结构以Embedding层为主。而采用大语言模型(LLM)实现的生成式召回模型,其参数规模大幅提升至0.5B至7B之间,模型结构主要由Dense网络构成。由于参数量的急剧增加,LLM在推理过程中所需的计算资源相比传统模型显著提升,通常高出数十倍甚至上百倍。这使得LLM在处理复杂任务时具备更强的表现力,但同时也对计算能力有了更高的要求。

将如此庞大的算力模型部署至线上环境,并确保其满足毫秒级实时响应的需求,同时在严格控制资源成本的前提下实现工业化应用,这无疑是对工程能力的巨大考验。因此,我们必须对在线推理架构进行极致的性能优化。

京东广告生成式召回基于 NVIDIA TensorRT-LLM 的推理加速实践

图 2: 在线推理架构

**

3、基于 TensorRT-LLM 的 LLM 构建优化及其系统部署

· 在建模封装层,通过 TensorRT-LLM 实现 LLM 模型的构建与优化。然后将 LLM 无缝整合至现有生态系统,利用 Python 与 TensorFlow API 实现端到端推理图的构建。基于 TensorFlow 原生算子及现有业务的自定义 TensorFlow 算子库(例如用户行为特征处理算子),实现算法的灵活建模。

· 在推理优化层,通过应用 Inflight Batching、Constrained Sampling、Flash Attention 及 Paged Attention 等加速方案,最大限度地提升单卡吞吐量并降低推理延迟。

· 在系统部署方面,为了最大化利用时间资源,生成式召回的部署采用了与传统多分支召回模块并行的方式。由于生成式召回简化了推理流程,相较于传统召回方式,其资源消耗更少,运行时间更短,并且取得了优异的召回效果。

 京东广告生成式召回基于 NVIDIA TensorRT-LLM 的推理加速实践

图 3:生成式召回与传统多路召回并行

4、生成式召回在推荐及搜索场景应用效果

目前,生成式召回已在京东广告推荐场景及搜索场景等业务线成功实施。在推荐场景,借助生成式模型的参数规模及语义理解优势,AB 实验结果显示商品点击率与消费带来了显著的提升。在搜索场景,通过 LLM 所具备的语义理解能力,显著提升了对查询与商品的认知能力,特别是在处理搜索中的长尾查询时,填充率有明显提升,AB 实验同样取得了点击率与消费几个点的收益增长。

0010 推理优化加速: 实现降低延迟、提升吞吐

在线推理基于Nvidia TensorRT-LLM, 通过使用 TensorRT-LLM 中的多种优化特性,并针对广告生成式召回业务场景进行深度定制优化后, 不仅模型推理延迟达到线上业务要求, 同时吞吐也有着显著提升。

在 NVIDIA GPU 上进行的测试中,通过对比 TensorRT-LLM 与基线,发现在限制 100 毫秒推理耗时的广告场景下,采用 TensorRT-LLM 进行推理,叠加针对业务的定制优化后,其吞吐量相较于 baseline提升了五倍以上。这相当于将部署成本降至原来的五分之一。

京东广告生成式召回基于 NVIDIA TensorRT-LLM 的推理加速实践



图 4:TensorRT-LLM 和基线的对比 (Qwen2-1.5B | beam 5 | vocab size 15W | input 150 | output 4)

对于这个特定的应用场景,beam width 的合理配置对检索结果有着重要影响。一般来说,较高的 beam width 能够增加候选商品的数量,从而提高检索的准确性。以返回 300 个商品为例,若 beam width 设置较低,每个 code 就需要对应更多的商品 id,这无疑会降低检索的精度。

针对这个情况,一方面我们与NVIDIA DevTech 技术团队合作进行了有针对性的二次开发和优化工作,另一方面,结合生成式召回的业务场景,研发定制高性能GPU算子,大幅提升推理效率,最终让 TensorRT-LLM 支持更大范围的 beam width, 从而及时满足了线上的业务需求。



0011 持续优化以实现模型效率效果提升

未来, 我们将持续在生成式推荐领域深入探索, 重点聚焦以下几个方面

1)提升模型规模,满足实时推理需求

当前,受制于算力、时间消耗和成本等客观条件,生成式推荐系统在实时推理中的可部署模型规模相对较小(约 0.5B 至 6B 参数)。然而,离线实验数据表明,扩大模型规模能够显著提升线上推荐效果。这对在线性能优化提出了更高要求。为了在不显著增加成本的前提下支持更大规模的模型在线部署,需要进一步优化模型结构和推理效率。例如,采用模型剪枝、量化等模型压缩技术,优化采样检索算法效率,以及高效的分布式推理架构。

2)扩展用户行为输入,提高模型效果

实验证明,输入更长的用户历史行为序列可以提升模型的推荐效果。然而,更长的序列输入会导致计算资源消耗的增加和推理时间的延长。为此,需要寻求在效果提升和性能开销之间的平衡。对应的优化方案包括:

a. Token 序列压缩:通过对输入序列进行压缩,如去除冗余信息、合并相似行为等,减少序列长度的同时保留关键信息。

b. 用户行为 KV 缓存复用:在推理过程中,针对用户行为特征有序递增的特点,对长期行为进行离线计算并进行缓存,在线部分负责计算实时行为,避免重复计算的同时最大化利用算力,提高推理效率。

3)融合稀疏与稠密模型,实现联合推理

随着模型参数量的增大,可以考虑将稀疏的传统 CTR 模型与稠密的 LLM 模型进行联合推理。稀疏模型擅长处理高维度的稀疏特征,具有计算效率高的优势;而稠密模型能够捕获复杂的非线性特征和深层次的语义信息。通过融合两者的优势,构建一个兼具高效性和精确性的推荐系统。

点赞
收藏
评论区
推荐文章
阿里P8面试官都说太详细了,你值得拥有
阿里P8级架构师第九篇:千亿流量高并发高可用分布式系统之数据治理篇阿里P8级架构师第十篇:千亿流量高并发高可用分布式系统之人工智能加成篇数据融合模块1.构建画像模块2.召回策略模块3.排序模型模块ctr预估4.微服务模块5.ABTest模块6.Spark调优模块7.推荐系统落地实践阿里P8级架构师第十一篇:千亿流量高并发高
【低代码实践】京东科技活动平台:魔笛介绍
作者:京东科技葛阳阳1、前言营销活动是公司进行用户拉新、交易转化、召回激活、裂变引流的重要手段,在活动业务发展的过程中,一定会遇到两类问题,通用性活动和定制化活动。通常情况下,通用性活动方案无法满足个性化的定制需求,所以我们面向不同用户开放不同的平台能力来
慧销平台ThreadPoolExecutor内存泄漏分析
京东生旅平台慧销系统,作为平台系统对接了多条业务线,主要进行各个业务线广告,召回等活动相关内容与能力管理。最近根据告警发现内存持续升高,每隔23天会收到内存超过阈值告警,猜测可能存在内存泄漏的情况,然后进行排查。根据24小时时间段内存监控可以发现,容器的内存在持续上升:
Wesley13 Wesley13
3年前
1分钟了解相似性推荐
前几天聊的“协同过滤(CollaborativeFiltering)”和“基于内容的推荐(ContentbasedRecommendation)”,都必须分析用户的历史行为数据(例如电影点击数据,职位查看数据等),针对不同的用户进行个性化推荐。如果系统没有用户的历史行为数据积累,如何实施推荐呢?今天接着用通俗的语言说说推荐算法中的“相似性推
Stella981 Stella981
3年前
Python使用Faiss库实现向量近邻搜索
本文是Python应用于推荐系统领域的技术文章。Embedding的近邻搜索是当前图推荐系统非常重要的一种召回方式,通过item2vec、矩阵分解、双塔DNN等方式都能够产出训练好的userembedding、itemembedding,对于embedding的使用非常的灵活:输入userembedding,近邻搜索it
京东云开发者 京东云开发者
11个月前
非内积级联学习
1.首页推荐非内积召回现状非内积召回源是目前首页推荐最重要的召回源之一。同时非内积相比于向量化召回最终仅将user和item匹配程度表征为embeding内积,非内积召回仅保留itemembedding,不构造user显式表征,而是通过一个打分网络计算用户
胡赤儿 胡赤儿
9个月前
智能推荐系统:个性化推荐引领消费新潮流
引言:随着互联网的普及和信息爆炸式增长,人们面对的选择越来越多,但同时也面临信息过载和选择困难的问题。在这样的背景下,智能推荐系统应运而生,通过分析用户的历史行为和兴趣,为其提供个性化的推荐,从而提高用户的满意度和购买体验。本文将深入探讨智能推荐系统的工作
京东云开发者 京东云开发者
2个月前
千万级数据深分页查询SQL性能优化实践
作者:京东零售曹志飞一、系统介绍和问题描述如何在Mysql中实现上亿数据的遍历查询?先来介绍一下系统主角:关注系统,主要是维护京东用户和业务对象之前的关注关系;并对外提供各种关系查询,比如查询用户的关注商品或店铺列表,查询用户是否关注了某个商品或店铺等。但