BFF层聚合查询服务异步改造及治理实践

京东云开发者
• 阅读 228

首先感谢王晓老师的[接口优化的常见方案实战总结]一文总结,恰巧最近在对稳健理财BFF层聚合查询服务优化治理,针对文章内的串行改并行章节进行展开,分享下实践经验,主要涉及原同步改异步的过程、全异步化后衍生的问题以及治理方面的思考与改进。 希望通过分享这些经验,能够对大家的工作有所启发和帮助。如果有任何问题或建议,请随时提出。 感谢大家的关注和支持!

一、问题背景

将不同理财产品(如基金、券商、保险、银行理财等)针对不同投放渠道人群进行个性化商品推荐,每个渠道或人群看到的商品或特性数据又各不相同,为方便渠道快速对接,由BFF层统一对所有数据进行聚合下发,因此BFF层聚集依赖了大量底层原子服务,所以主要问题是在依赖大量上游接口的场景下保障TP99、以及可用率。

案例:

以其中比较典型的商品推荐接口为例,需要依赖本地商品池缓存、算法推荐服务、商品基础信息服务、持仓查询服务、人群标签服务、券配置服务,可领用券服务、其他数据服务ServN……等等,其中大部分上游原子接口对单次批量查询支持有限,所以极端情况,单个推品接口单次推荐1-n个推品,每个商品如果要绑定10个动态属性,至少需要发起(1~n)*10次io调用。

改造前的流程和问题:

流程: BFF层聚合查询服务异步改造及治理实践 

问题:

▪一是逻辑流程强耦合,很多上下游服务强同步依赖;

▪二是链路较长,其中某个上游服务不稳定时很容易造成整体链路失败。

改造后的流程和实现的目标:

流程:

BFF层聚合查询服务异步改造及治理实践 

目标:

▪改造目标也很明确,就是对现有逻辑改造,尽可能增加弱依赖比例,一是方便异步提前加载,二是弱依赖代表可摘除,为降级操作奠定基础,减少因某个链路抖动影响整体链路失败;

初步改造后的新问题【【重点解决】】:

▪逻辑上解耦比较简单,无非就是前置参数或冗余加载,本次不展开探讨;

▪技术上改造前期异步逻辑主要是采用@Async("tpXXX")标注,这也是最快捷实现的方式,但也存在以下几个问题,主要是涉及治理方面:

1. 随着项目和人员不断迭代,造成@Async注解满天飞;
2. 不同人员在不熟悉其他模块的情况下,无法界定不同线程池的是否可公用,大多都会采用声明新的线程池,造成线程池资源泛滥;
3. 部分调用场景不合理造成@Async嵌套过多或注解失效问题;
4. 降级机制重复代码太多,需要频繁手动声明各种降级开关;
5. 缺少统一的请求级别的缓存机制,虽然jsf已经提供了一定程度的支持;
6. 线程池上下文传递问题;
7. 缺少线程池状态的统一监控报警,无法观测实际运行过程中的每个线程池状态,可能每次都是拍脑袋觉设置线程池参数。

二、整体改造路径

切入点:

鉴于大部分项目都会封装单独的io调用层,比如 com.xx.package.xxx.client,所以以此为切入点进行重点改造治理。

最终目标:

实现、应用简单,对老代码改造友好,尽可能降低改造成本;

1. 抽象io调用模板,统一io调用层封装规范,标准化io调用需要的增强属性声明并提供默认配置,如所属线程池分配、超时、缓存、熔断、降级等;
2. 优化@Async调用,所有io异步操作统一收缩至io调用层,在模板层实现回调机制,老代码仅继承模板即可实现异步回调;
3. 请求级别的缓存实现,默认支持r2m;
4. 请求级别的熔断降级支持,在上游故障时使服务实现一定程度的自治理;
5. 线程池集中管理,对上下文自动传递MDC参数提供支持;
6. 线程池状态自动可视化监控、报警实现;
7. 支持配置中心动态设置。

具体实现:

1. io调用抽象模板

模板主要作用是进行规范和增强,目前提供两种模板,默认模板、缓存模板,核心思想就是对io操作涉及的大部分行为进行声明,比如当前服务所属线程池分组、请求分组等,由委托组件按照声明的属性进行增强实现,示例如下:

主要是提供代码级别的默认声明,从日常实践看大部分采用开发时的代码级别的配置即可。

BFF层聚合查询服务异步改造及治理实践

BFF层聚合查询服务异步改造及治理实践

2. 委托代理

此委托属于整个执行过程的桥接实现,io封装实现继承抽象模板后,由模板创建委托代理实例,主要用于对io封装进行增强实现,比如调用前、调用后、以及调用失败自动调用声明的降级方法等处理。

可以理解为:模板专注请求行为,委托关注对象行为进行组合增强。

BFF层聚合查询服务异步改造及治理实践 

3. 执行器选型

基于前面的实现目标,减少自研成本,调研目前已有框架,如 hystrix、sentinel、resilience4j,由于主要目的是期望支持线程池级别的壁舱模式实现,且hystrix集成度要优于resilience4j,最终选型默认集成hystrix,备选resilience4j, 以此实现线程池的动态创建管理、熔断降级、半连接重试等机制,HystrixCommander实现如下:

BFF层聚合查询服务异步改造及治理实践 

4. hystrix 适配 concrete 动态配置

1、继承concrete.PropertiesNotifier, 注册HystrixPropertiesNotifier监听器,缓存配置中心所有以hystrix起始的key配置;

2、实现HystrixDynamicProperties,注册ConcreteHystrixDynamicProperties替换默认实现,最终支持所有的hystrix配置项,具体用法参考hystrix文档。

BFF层聚合查询服务异步改造及治理实践

5. hystrix 线程池上下文传递改造

hystrix已经提供了改造点,主要是对HystrixConcurrencyStrategy#wrapCallable方法重写实现即可,在submit任务前暂存主线程上下文进行传递。

BFF层聚合查询服务异步改造及治理实践 

6. hystrix、jsf、spring注册线程池状态多维可视化监控、报警

主要依赖以下三个自定义组件,注册一个状态监控处理器,单独启动一个线程,定期(每秒)收集所有实现数据上报模板的实例,通过指定的通道实现状态数据推送,目前默认使用PFinder上报:

▪ThreadPoolMonitorHandler 定义一个线程状态监控处理器,定期执行上报过程;

▪ThreadPoolEndpointMetrics 定义要上报的数据模板,包括应用实例、线程类型(spring、jsf、hystrix……)、类型线程分组、以及线程池的几个核心参数;

▪AbstractThreadPoolMetricsPublisher 定义监控处理器执行上报时依赖的通道(Micrometer、PFinder、UMP……)。

例如以下是hystrix的状态收集实现,最终可实现基于机房、分组、实例、线程池类型、名称等不同维度的状态监控:

BFF层聚合查询服务异步改造及治理实践

BFF层聚合查询服务异步改造及治理实践 

BFF层聚合查询服务异步改造及治理实践 

PFinder实际效果:支持不同维度组合查看及报警

BFF层聚合查询服务异步改造及治理实践 

BFF层聚合查询服务异步改造及治理实践 

BFF层聚合查询服务异步改造及治理实践 

7. 提供统一await future工具类

由于大部分调用是基于列表形式的异步结果List<Future>、Map<String,Future>,并且hystrix目前暂不支持返回CompletableFuture,方便统一await,提供工具类:

BFF层聚合查询服务异步改造及治理实践



8. 其他小功能

1、除了sgm traceId支持,同时内置自定义的traceId实现,主要是处理sgm在子线程内打印traceId需要在控制台手动添加监控方法的问题以及提供对部分无sgm环境的链路Id支持,方便日志跟踪;

2、比如针对jsf调用,基于jsf过滤器实现跨应用级别的前后请求id传递支持;

3、默认增加jsf过滤器实现日志打印,同时支持provider、consume的动态日志打印开关,方便线上随时开关jsf日志,不再需要在client层重复logger.isDebugerEnabled();

4、代理层自动上报io调用方法、fallback等信息至ump,方便监控报警。

日常使用示例:

1. 一个最简单的io调用封装

仅增加继承即可支持异步回调,不重写线程池分组时使用默认分组。

BFF层聚合查询服务异步改造及治理实践 

2. 一个支持请求级别熔断的io调用封装

默认支持的熔断级别是服务级别,老服务仅需要继承原请求参数,实现FallbackRequest接口即可,可防止因为某一个特殊参数引起的整体接口熔断。

BFF层聚合查询服务异步改造及治理实践 

BFF层聚合查询服务异步改造及治理实践 

3. 一个支持请求级别缓存、接口级别熔断降级、独立线程池的io调用封装

BFF层聚合查询服务异步改造及治理实践 

4. 上层调用,实际效果

1、直接将一个商品列表转换成一个异步属性绑定任务;

2、利用工具类await List<Future>;

3、在上层无感知的状态下,实现线程池的管理、熔断、降级、或缓存逻辑的增强,且可根据pfinder监控的可视化线程池状态,通过concrete实时调整线程池及超时或熔断参数;

4、举例:比如某接口频繁500ms超时,可通过配置直接打开短路返回降级结果,或者调低超时为100ms,快速触发熔断,默认10s内请求总数达到20个,50%失败时打开断路器,每隔5s半链接重试。

BFF层聚合查询服务异步改造及治理实践 

BFF层聚合查询服务异步改造及治理实践 

三、最后

本篇主要是思考如何依赖现有框架、环境的能力,从代码层面系统化的实现相关治理规范。

最后仍引用王晓老师文章结尾来结束

接口性能问题形成的原因思考我相信很多接口的效率问题不是一朝一夕形成的,在需求迭代的过程中,为了需求快速上线,采取直接累加代码的方式去实现功能,这样会造成以上这些接口性能问题。 变换思路,更高一级思考问题,站在接口设计者的角度去开发需求,会避免很多这样的问题,也是降本增效的一种行之有效的方式。 以上,共勉!

点赞
收藏
评论区
推荐文章
Dubbo架构设计与源码解析(二) 服务注册
作者:黄金一、Dubbo简介Dubbo是一款典型的高扩展、高性能、高可用的RPC微服务框架,用于解决微服务架构下的服务治理与通信问题。其核心模块包含【RPC通信】和【服务治理】,其中服务治理又分为服务注册与发现、服务容错、负载均衡、流量调度等。今天将重点介
作业帮上万个 CronJob 和在线业务混部,如何解决弱隔离问题并进一步提升资源利用率?
作者吕亚霖,作业帮基础架构架构研发团队负责人。负责技术中台和基础架构工作。在作业帮期间主导了云原生架构演进、推动实施容器化改造、服务治理、GO微服务框架、DevOps的落地实践。别路,作业帮基础架构高级研发工程师,在作业帮期间,负责多云K8s集群建设、K8s组件研发、Linux内核优化调优相关工作。背景作业帮在云原生容器化改造的过程中,随着
TKE 用户故事 - 作业帮 PB 级低成本日志检索服务
作者吕亚霖,2019年加入作业帮,作业帮架构研发负责人,在作业帮期间主导了云原生架构演进、推动实施容器化改造、服务治理、GO微服务框架、DevOps的落地实践。莫仁鹏,2020年加入作业帮,作业帮高级架构师,在作业帮期间,推动了作业帮云原生架构演进,负责作业帮服务治理体系的设计和落地、服务感知体系建设以及自研mesh、MQproxy研发工作。摘要日志是服务
Easter79 Easter79
3年前
SpringCloud(一)之微服务核心组件Eureka(注册中心)的介绍和使用
一Eureka服务治理体系1.1服务治理服务治理是微服务架构中最为核心和基础的模块,它主要用来实现各个微服务实例的自动化注册和发现。SpringCloudEureka是SpringCloudNetflix微服务套件中的一部分,它基于NetflixEureka做了二次封装。主要负责完成微服务架构中的服务治理功能。Eur
Easter79 Easter79
3年前
SpringCloud系列:服务注册中心搭建
服务治理在上一节中简单介绍了SpringCloud和微服务架构,本章介绍如何使用SpringCloud来实现服务治理。由于SpringCloud为服务治理做了一层抽象接口,所以在SpringCloud应用中可以支持多种不同的服务治理框架,比如:NetflixEureka、Consul、Zookeeper。在SpringCloud服
京东云开发者 京东云开发者
2星期前
11.11大促背后的技术保障:SLA与SLO的深度解析与实践案例
作者:京东物流冯志文背景又到一年的11.11大促日,最近很多团队邮件上下游确认SLA,你是不是还没搞明白服务质量SLA、SLO等概念?本文通过理论知识以及基于SLO告警治理的实践经验分享。详细介绍如何设置SLO、有效的告警泛滥治理、以及如何根据SLO的指标
京东购物车如何提升30%性能 | 京东云技术团队
本文主要介绍在业务复杂化背景下,京东零售购物车团队努力践行工匠精神,通过全异步化改造提升系统性能、提升用户体验。通过本文,读者可以了解购物车中台进行全异步化改造的总体方案,以及方案落地过程中遇到的问题及解决方法,读者可重点关注文中提到的多分页并行后,分页精细控制及底层RPC异常信息问题。
BFF层聚合查询服务异步改造及治理实践 | 京东云技术团队
最近在对稳健理财BFF层聚合查询服务优化治理,针对文章内的串行改并行章节进行展开,分享下实践经验,主要涉及原同步改异步的过程、全异步化后衍生的问题以及治理方面的思考与改进。
京东云开发者 京东云开发者
9个月前
【稳定性】稳定性建设之依赖设计
背景随着分布式微服务的发展,一个普通的应用可能会依赖于许多其他服务,这给系统的限流降级、优化改造等操作带来了困难。在没有明确强弱依赖关系的情况下,我们很难有效地进行这些操作。为了解决这个问题,强弱依赖治理成为了一种科学的手段。通过强弱依赖治理,我们可以持续
京东云开发者 京东云开发者
1个月前
质量视角下的系统稳定性保障--稳定性保障常态化自动化实践
作者:京东物流翁美婷一、前言随着系统数量增多,复杂度提高,线上应急问题时有发生;加之需投入大量人力进行服务治理和验证,为了减少日常应急问题及提前排除风险,发起对生产系统的持续综合性治理,实现常态化稳定性治理。在常态化治理过程中我们将识别问题等重复性有规律的